Ф и зи ческ и й ф ак у л ьтет
К аф едра общ ей ф и зи к и
М ето д и ч еск и е у к а за ни я к ла бора торном у пра к т...
58 downloads
163 Views
169KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Ф и зи ческ и й ф ак у л ьтет
К аф едра общ ей ф и зи к и
М ето д и ч еск и е у к а за ни я к ла бора торном у пра к ти к у м у пом ех а ни к е д ля сту д ентов 1 к у рса д невногои 2 к у рса веч ернегоотд елени й ф и зи ч еск огоф а к у льтета
С остави тел и : О .М . Гол и цына В.И. Носова
ВОРОНЕ Ж 2002
2 Ра бо ты 5Аи 5Б. И зу ч ени е геом етри и м а сс тверд ы х тел Ц ел ь работ: эк спери ментал ьнаяпроверк а зави си мости меж ду моментами и нерци и тел а относи тел ьно осей , пересек ающ и хся в одной точк е. О предел ени е гл авных моментов и нерци и си мметри чных тел методом к ру ти л ьного маятни к а. О бору довани е: к ру ти л ьный маятни к , ми л л и сек у ндомер сф отодатчи к ом, образцы. I. Введени е С вяж ем с твердым тел ом неразрывно нек отору ю прои звол ьно выбранну ю си стему к оорди нат XYZ, помести в ее начал о в прои звол ьной точк е O. Пространственное распредел ени е массы твердого тел а относи тел ьно этой си стемы мож ет быть опи сано шестью незави си мыми вел и чи нами J ik , совок у пность к оторых составл яет так называемый тензор и нерци и . Тензор и нерци и мож но представи ть в ви де си мметри чной ( J ik = J ki ) матри цы: J xx J yx J zx где
J xy J yy J zy
J xz J yz , J zz
J yy = Σm( x 2 + z 2 ) , = −Σmxz , J yz = J zy = −Σmyz .
J xx = Σm( y 2 + z 2 ) ,
J xy = J yx = −Σmxy , J xz = J zx
J zz = Σm( x 2 + y 2 ) ,
Здесь су мми ровани е прои зводи тся по всем эл ементарным массам, составл яющ и м твердое тел о. Д и агонал ьные к омпоненты тензора и нерци и , очеви дно, явл яются моментами и нерци и тел а относи тел ьно осей OX, OY и OZ. О ни всегда пол ож и тел ьны. В дал ьней шем бу дем обозначать и х J x , J y , J z . Неди агонал ьные эл ементы тензора называются центробеж ными моментами и нерци и . Э ти эл ементы могу т ок азатьсяк ак пол ож и тел ьными , так и отри цател ьными и равными ну л ю в зави си мости от выбора си стемы к оорди нат. В частности , направл ени е осей x, y, z всегда мож но подобрать так и м образом, чтобы все центробеж ные моменты и нерци и обрати л и сь в ну л ь. Тензор и нерци и бу дет и меть тогда ди агонал ьный ви д: Jx 0 0
0 Jy 0
0 0 Jz
3 Так и е оси к оорди нат называются гл авными осями и нерци и тел а, а моменты и нерци и J x , J y , J z относи тел ьно эти х осей – гл авными моментами и нерци и тел а. Нахож дени е гл авных осей очень у прощ ается в сл у чаях си мметри чных тел . Так , л егк о пок азать, что есл и тел о и меет ось си мметри и , то одна и з гл авных осей совпадает сэтой осью, а две дру ги е л еж ат в перпенди к у л ярной к ней пл оск ости , при чем ори ентаци я и х в этой пл оск ости прои звол ьна. Есл и тел о обл адает пл оск остью си мметри и , то две гл авные оси л еж ат в этой пл оск ости , а третьяк ней перпенди к у л ярна и т. д. К ак ова зави си мость меж ду моментами и нерци и тел относи тел ьно осей , пересек ающ и хся в одной точк е? Пу сть на ри с.1 оси XYZ выбраны так , что они совпадают сгл авными осями и нерци и тел а с начал ом в точк е O. Р ассмотри м прои звол ьну ю ось, так ж е проходящ у ю через эту точк у , направл ени е r n, к оторой задается еди ни чным век тором составл яющ и м с гл авными осями у гл ы α, β, γ соответственно. Тогда момент и нерци и тел а относи тел ьно этой оси мож ет быть представл ен в ви де (см. [2], [4] в спи ск е л и терату ры). J = J x cos2 α + J y cos2 β + J z cos2 γ , (1) Р и с. 1. где J x , J y , J z – гл авные моменты и нерци и . II. М етоди к а эк спери мента О предел ени е гл авных моментов и нерци и си мметри чных тел и проверк у равенства (1) л егк о осу щ естви ть при помощ и к ру ти л ьного маятни к а, схемати ческ и и зображ енного на ри с.2. Иссл еду емое тел о заж и мается в рамк е маятни к а, подвешенной к у пру гой верти к ал ьно натяну той r провол ок е (поэтому век тор n на нашей у становк е всегда направл ен по верти к ал и ). Пери од к ру ти л ьных к ол ебани й маятни к а равен T = 2π
Р и с. 2.
J + Jo f
,
(2)
где J – момент и нерци и тел а относи тел ьно верти к ал ьной оси , J o – момент и нерци и рамк и , f – моду л ь к ру чени я провол ок и . Пери од к ол ебани й рамк и без гру за:
4 To = 2π
Jo f
(3)
Иск л ючая f и з (2) и (3), находи м J = J o (T 2 − To2 ) / To2
(4)
Зак репл яя тел о в рамк е при помощ и при ж и мной пл анк и так , чтобы с верти к ал ьной осью вращ ени я поочередно совпал и гл авные оси и нерци и тел а, пол у чи м дл ягл авных моментов и нерци и J x = J o (Tx2 − To2 ) / To2 , J y = J o ( Ty2 − To2 ) / To2 , J z = J o ( Tz2 − To2 ) / To2 ,
(5)
где Tx , Ty , Tz – пери оды к ол ебани й маятни к а, к огда его ось вращ ени ясовпадает с одной и з гл авных осей X, Y, Z. Подстави в (4) и (5) в соотношени е (1), пол у чи м T 2 = Tx2 cos2 α + Ty2 cos2 β + Tz2 cos2 γ
(6)
Ф орму л а (6) связывает пери оды к ру ти л ьных к ол ебани й тел а Tx , Ty , Tz относи тел ьно его гл авных осей спери одом к ол ебани й вок ру г прои звол ьной оси , составл яющ ей сгл авными осями у гл ы α, β, γ. Замети м, что зату хани е к ол ебани й при этом предпол агал ось достаточно мал ым. Д л я определ ени я момента и нерци и J o рамк и воспол ьзу емся этал онным тел ом, момент и нерци и к оторого J э и звестен. Из ф орму л ы (4) и меем
To2 , Jo = Jэ 2 Tэ − To2 где Tэ – пери од к ол ебани й рамк и сэтал онным тел ом. Подстави в J o ф орму л у (5), пол у чаем ок ончател ьно
5 Ty2 − To2 Tx2 − To2 Tz2 − To2 J x = Jэ 2 J = J , J J = , y э 2 z э 2 Tэ − To2 Tэ − To2 Tэ − To2
(7)
В данной работе дл я и ссл едовани я и спол ьзу ются три масси вных метал л и ческ и х тел а: а) к у б со стороной a; б) прямоу гол ьный парал л ел епи пед, у к оторого a = b