распознавание образов разделилось на поднаправления, занимавшиеся разработкой систем распознавания вероятностных, детерм...
93 downloads
217 Views
4MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
распознавание образов разделилось на поднаправления, занимавшиеся разработкой систем распознавания вероятностных, детерминированных, логических, структурных и других.
Предисловие
В наше время искусственные нейронные сети (ИНС) вызывают большой интерес у специалистов разных направлений. Тех, кто не знаком с ними, интригует само название «нейронные сети», в котором слышится намек на искусственные интеллектуальные системы. Биологи ищут в ИНС аналогии со свойствами живой нервной системы, но, как правило, остаются разочарованными. Тех, кто связан с распознаванием образов, ИНС привлекают возможностью построения системы распознавания, минуя трудоемкие этапы построения математической модели этой системы и ее оптимизации. Специалисты, занимающиеся собственно ИНС, всегда озабочены поиском выхода из проблем, которыми современные нейронные сети обладают в избытке. Настоящий сборник содержит статьи, отражающие некоторые результаты работы Отдела имитационных систем ИСП РАН в области нейросетевых технологий. В основном, исследования отдела ведутся в русле развития нового направления, инициированного сотрудниками отдела, и связанного с построением новой концепции адаптивного управления (метод «автономного адаптивного управления» (ААУ)). Нейроноподобная реализация систем ААУ опирается на специально для этого разработанные модели нейронов и нейросетей. Чтобы читателю было легче понять, зачем авторам понадобилось разрабатывать новые модели нейронных сетей, и чем не устраивают уже имеющиеся ИНС, коротко напомним и прокомментируем основные положения ИНС, а затем укажем на те их недостатки, которые авторы и пытаются исправить. Искусственные нейронные сети, как направление кибернетики, появилось в 40-х годах ХХ века в результате попыток понять и смоделировать функции, строение и принцип действия биологических нервных систем, мозга, интеллекта. За задачу взялись с разных сторон, и вскоре были выявлены, соответственно, разные аспекты изучаемого объекта. Возник очень широкий спектр постановок задач и различных направлений исследований. Это было «время разбрасывать камни» - время, когда идеи и гипотезы рождались бурно, они были плохо сформулированы, решений не было, или они были фрагментарны и плохо формализованы. Однако, похоже, что приверженцы разных направлений вскоре совсем перестали понимать друг друга, чему способствовало появление сложных и различных формализованных описаний задач и полученных решений. Возникли такие направления, как распознавание образов, нейронные сети, системы, работающие со знанями, принятие решений, машинный перевод, робототехника, машинные игры. Кроме того, каждое направление разделилось на поднаправления, стремительно удалявшиеся друг от друга. Например, 5
В те же годы начало развиваться и направление ИНС, поставившее себе целью моделирование процессов, происходящих в нервной клетке-нейроне и в нервной ткани – сети, образованной из нейронов. Нейрон, как устройство, конвергирующее входные воздействия – нервные импульсы, производящее результат тоже в виде нервных импульсов, и дивергирующего его по другим нейронам, стал предметом изучения, как нейрофизиологов, так и кибернетиков. Последние строили различные модели нейрона, не дожидаясь того момента, когда нейрофизиологи предоставят исчерпывающее описание функциональности нервной клетки. И такое нетерпение оказалось оправданным, поскольку долгожданного описания биологической нервной клетки не существует и поныне. Тому имеется две причины. Первая из них связана с миниатюрностью биологического нейрона. У этого «черного ящика» физически трудно измерить и запротоколировать входные и выходные сигналы. Еще более трудно разобраться в структуре нервной сети в нервной системе и мозге, в которых количество нейронов и связей между ними измеряется астрономическими числами. Вторая причина, на наш взгляд, состоит в том, что функция нейрона достаточно сложна, для того, чтобы в ней можно было разобраться вне системного подхода, т.е. без понимания логики работы всей нервной системы. Нейрофизиологи, в принципе, могут не знать, какие из многочисленных свойств нейрона являются ключевыми, на что именно следует обращать внимание для того, чтобы построить его адекватную модель. Каков критерий правильность модели нейрона? Ответа на эти вопросы сейчас нет. Очевидно, что модель нейрона должна обеспечивать правильную работу модели нервной системы, мозга. Но этой модели сегодня нет. Отсутствует понимание функций мозга даже в самом общем виде, как это ни странно звучит. Уверенно называются только некоторые из задач, которые решает нервная система (например, распознавание образов, принятие решений), но комплексное понимание ее работы в целом отсутствует. Даже такие очевидные, как теперь кажется, понятия, как обратная связь, необходимая для управления, были введены в модель нервной системы совсем недавно (Н.Винер, П.К.Анохин). Существуют разные варианты концепций работы мозга, но до консенсуса среди специалистов еще далеко и в наше время. В условиях 40-х гг., когда биологических данных было мало, адекватные модели нейрона предложить было еще труднее. Тем не менее, в 1943 г. одна из моделей нейрона, а именно, модель, предложенная Маккалоком и Питтсом [П1], впоследствии названная формальным нейроном, оказалась сравнительно удачной в следующих отношениях. Модель была логической, что приближало ее к свойствам логических элементов вычислительной техники, т.е. делало ее легко вычислимой. Модель была сравнительно простой. Впоследствии эта модель нейрона претерпела еще большее упрощение и теперь она представляет собой взвешенный сумматор входных сигналов, выходной сигнал которого определяется так называемой активационной функцией, 6
значение которой зависит от указанной суммы. Активационная функция может иметь, например, экспоненциальный вид, либо представлять собой пороговую функцию с двумя значениями 0 и 1. Если n входов нейрона с пороговой функцией понимать как n измерений в признаковом пространстве, то присвоенные этим входам веса определяют в признаковом пространстве гиперплоскость, делящую ее на два подпространства, для одного из которых выходной сигнал нейрона будет равен 1, а для другого 0. Эту гиперплоскость можно интерпретировать как решающую границу элементарной системы распознавания, в которую превращается формальный нейрон, способной распознавать два класса (образа) объектов, представляемых возможными значениями входных векторов. Теперь проблема состоит в том, чтобы подобрать такие значения весов для входов нейронов, которые позволили бы распознавать необходимые образы, представленные в обучающей выборке. Если для заданного множества источников входных сигналов (датчиков) создать однослойный персептрон, т.е. линейку нейронов, на каждый из которых подаются сигналы от всех датчиков, но с различными весами, то получим систему распознавания, способную распознавать классы, разделяемые в признаковом пространстве гиперплоскостями всех нейронов. Если мы хотим получить классы, представленные в признаковом пространстве ограниченными выпуклыми областями, то следует использовать 2-слойный персептрон, где нейроны 2-го слоя будут осуществлять логическую композицию открытых областей. А если класс должен быть представлен ограниченной невыпуклой областью, то необходим 3-слойный персептрон, где нейроны 3-го слоя будут конструировать невыпуклую область из нескольких выпуклых. Были разработаны различные алгоритмы обучения ИНС для автоматического подбора весов нейронов всех слоев многослойного персептрона. Эти алгоритмы могут быть детерминированными, а могут быть стохастическими. Большинство из этих алгоритмов обучения реализуют принцип обучения с учителем. Алгоритм пользуется обучающей выборкой, т.е. заранее известно, какие значения должны иметь выходы ИНС при предъявлении ей того или иного объекта из обучающей выборки. Алгоритм должен иметь возможность наблюдать все фактические выходы ИНС, знать желаемые (целевые) выходы для данного примера обучающей выборки и сравнивать их друг с другом. По результатам сравнения алгоритм корректрует веса всех нейронов ИНС. Настройка ИНС проводится для каждого примера из обучающей выборки и до тех пор, пока ИНС не начнет распознавать все эти примеры с требуемой точностью. Только после этого ИНС считается готовой к использованию для распознавания реальных предъявляемых объектов. Настроенная, обученная ИНС способна распознавать предъявляемые ей новые объекты, относя их к одному из классов, распознаванию которых ее удалось обучить. Проблемы ИНС состоят в том, что алгоритмы обучения весьма трудоемки, и нельзя уверенно утверждать, что при обучении ИНС в конкретном случае будет достигнут успех, например, в приемлемое время (проблемы обучаемости
и представимости). Еще одна проблема связана с тем, что если возникнет необходимость дообучить ИНС еще для одного примера, то ее может постигнуть катастрофическое забывание – ИНС утратит ранее приобретенные навыки и обучение придется начинать сначала для новой расширенной обучающей выборки. Однако в случае успеха, когда ИНС удалось обучить распознавать примеры из обучающей выборки, ее можно использовать для автоматического распознавания образов. Очевидно, что распознавание образов – это интеллектуальная задача. К задаче распознавания можно свести множество задач управления. Это такие случаи, когда заранее известно, что именно система управления должна делать в той или другой ситуации, и остается только одна проблема – правильно распознать текущую ситуацию (класс, образ, сцену). Например, в пропускной системе предприятия заранее известны сотрудники, которых следует пропускать на территорию предприятия, и проблема только в том, чтобы правильно распознавать этих людей. Второе использование ИНС также восходит к распознаванию, это способность ИНС апроксимировать функции. При этом используются нейроны с гладкими активационными функциями, и ИНС можно обучить апроксимировать заданную функцию с заданной точностью. Здесь также стоит задача обучения ИНС, т.е. подбора оптимальных весов для входов нейронов. Этими двумя основными способностями ИНС, позволяющими решать задачи распознавания и апроксимации без производства сложных аналитических расчетов, а лишь за счет обучения ИНС на примерах обучающей выборки, и обусловлен высокий интерес к практическому использованию ИНС. ИНС нашли широкое применение в разных технических системах. Математики и инженеры, стараясь получить максимум пользы из этих способностей ИНС, развили математический аппарат таких ИНС, доказали способности ИНС к обучению и сходимости, изобрели множество различных активационных функций, множество типовых схем соединения нейронов в сети (послойные, полносвязные, прореженные, модульные, с обратными связями и без них), а также множество алгоритмов обучения ИНС. Заметно ощущается то, что в нынешнем своем варианте ИНС приближаются к пределу своих возможностей. При этом, многие специалисты по ИНС давно забыли про биологический прототип своего направления – биологические нейроны и нервные системы. Это отразилось в следующем: a) ИНС в их современном виде мало похожи на биологические нервные системы, на что постоянно указывают нейрофизиологи; b) ИНС решают не те задачи, которые решают биологические нервные системы, мозг, а лишь частные искусственные случаи этих задач; c) формальные нейроны в ИНС работают не так, как биологические нейроны, и выполняют иные функции; d) ИНС достигли своих упомянутых выше ограничений и необходим существенный поворот в их развитии.
7
8
В настоящее время в нейроинформатике все заметнее проявляется смещение акцентов от поиска более эффективных алгоритмов обучения традиционных ИНС к более углубленному изучению свойств биологических нервных систем и нейронов, и к попыткам воспроизведения этих свойств в искусственных нейронных системах. Какие же свойства современных ИНС вызывают неудовлетворение? Вот основные из них в порядке от микро- к макроописанию. 1. В биологическом нейроне большую роль играют временные задержки, например, синаптические. Время в системе управления, на наш взгляд, играет принципиально важную роль, так как оно задает причинно-следственную последовательность событий. В формальных нейронах временные задержки не учитываются. 2. Биологический нейрон, по-видимому, может рассматриваться как самообучаемая система распознавания. Во всяком случае, механизм, определяющий рост синапсов, связан, скорее, с локальными условиями в самом синапсе и в его ближайшем окружении (например, это химический механизм). Маловероятно, чтобы размерами синапсов управляла бы некая система (учитель), наблюдающая выходы всех миллиардов нейронов и знающая «целевой вектор», как это осуществляется в ИНС. 3. Важная информация в выходном сигнале нейрона содержится в частоте генерируемой им последовательности импульсов (спайков). Формальные нейроны не учитывают этого механизма. 4. По нашему убеждению, нейрон является самообучаемой системой автоматической классификации входных пространственно-временных сигналов, способной решать три задачи: обнаружить неслучайные пространственновременные комбинации входных сигналов (образы), если таковые имеются, запомнить их, и распознавать эти комбинации в дальнейшем даже в условиях неполного входного вектора, чем обеспечивается ассоциативность и прогнозирование, необходимые для управления. Современные формальные нейроны представляют собой только обучаемые с учителем системы распознавания. 5. Нервная система и мозг имеют сложную неоднородную структуру с ярко выраженными подсистемами, имеющими различное функциональное назначение. Напротив, современные ИНС отличаются однородностью и регулярной структурой, в них не выделяются части, имеющие разное функциональное назначение. 6. Биологическая нервная система и мозг решают, по нашему убеждению, прежде всего задачу автономного адаптивного управления. Такая задача требует согласованного решения целого комплекса определенных подзадач, к числу которых относятся задачи: автоматической классификации, накопления знаний, вывода новых знаний, принятия решений и других. Задача распознавания образов с предварительным обучением с учителем, к которой, по существу, только и способны ИНС в их традиционном варианте, является только одной из 9
подзадач, решаемых биологической нервной системой. Вместе с тем, мы убеждены, что определение и понимание задачи, решаемой нервной системой и мозгом, как целым, системным образом отразится на понимании функций отдельного нейрона. Вот этот список недостатков ИНС и пытаются преодолеть авторы настоящего сборника. Так, статья д.ф.-м.н. Б.В. Крыжановского и академика А.Л. Микаэляна (Институт оптико-нейронных технологий РАН) «Биологический алгоритм распознавания сильно скоррелированных образов» посвящена указанной выше проблеме создания моделей нейронов, передающих информацию посредством частоты следования выходных импульсов. Именно, авторами проведен анализ распознающей способности нейросети, способной хранить и обрабатывать информацию, закодированную в виде частотнофазовой модуляции. Информативные сигналы в рассматриваемой сети передаются по межнейронным связям в виде квазимонохроматических импульсов на n разных частотах. За основу такой сети принят "параметрический" нейрон – обладающий кубической нелинейностью элемент, способный к преобразованию и генерации частот в процессах параметрического четырехволнового смешения. Показано, что с ростом числа несущих частот помехозащищенность рассматриваемой ассоциативной памяти резко возрастает. Одновременно резко возрастает и объем нейросетевой памяти, которая в n2 раз больше аналогичной величины в стандартной сети Хопфилда. Число образов, которые способна сохранять такая нейросеть, может во много раз превышать число нейронов. Последующие статьи сборника тесно связаны с разрабатываемым в ИСП РАН методом «автономного адаптивного управления» (ААУ) [П1], его нейроноподобной реализацией, его проблемами и практическими приложениями. Перед сборником не ставилась цель дать полное изложение метода ААУ, но чтобы читателю было легче понимать постановки задач, коротко представим метод ААУ здесь. Метод родился из попыток логически и рационально вывести способ действия нервных систем, отталкиваясь от тех условий, в которых они находятся в природе: наличие априори неизвестных свойств окружающей среды наряду с определенной полученной от предков начальной приспособленностью объекта управления и управляющей системы, автономность - необходимость к самообучению, дискретность строения нервной системы,. Мы сочли интересным представить в сборнике статью А.А Жданова., Г.Я. Кантора и А.Б. Эфрона «Логический адаптивный управляющий автомат с конечным числом входов», написанную по материалам задепонированной в 1984 году работы [А.А. Жданов, Г.Я. Кантоp, А.Б. Эфpон, И.Г. Hовикова «Построение гомеостазисного автомата с конечным количеством входных переменных», ВИHИТИ "Депониpованые научные работы", 1984, N2, стp.108, 336. 17 стp.]. Статья интересна не только тем, что это первая публикация по методу ААУ, но и тем, что она до сих пор остается своего рода планом работы по данному направлению. Некоторые из тогда еще только
10
выведенных положений, впоследствии были более удобно формализованы и получили свою реализацию в программных моделях и прикладных программах, в которых подтвердили свою правильность. А некоторые положения еще до сих пор не реализованы и находятся в работе. Наиболее важные моменты этой статьи описывают идеи алгоритмов, осуществляющих «познание» управляющей системой свойств окружающей ее среды, т.е. получение эмпирических знаний. Эти алгоритмы берут свое начало в философской теории познания – гносеологии. Позже в работах над методом ААУ определились такие понятия, как вынужденные целевые функции управления - выживание и накопление новых знаний. Определился состав и структура подсистем управляющей системы, решающих задачи: формирования и распознавания образов, накопления знаний, вывод новых знаний, моделирование эмоций, принятие решений. Попытки дать микроописание системы ААУ привели к представлениям о необходимой функции нейрона, как базового элемента для нейросетевой коннекционистской реализации управляющей системы. Разработанные нами модели нейронов описаны в [П2, П3]. Обладающий высокой универсальностью метод ААУ позволяет строить адаптивные системы управления для самых разных объектов, некоторые из которых представлены в [П4-П7]. Метод ААУ имеет свои проблемы, решению которых и посвящены следующие статьи сборника. Статья М.В. Караваева (ИСП РАН) «Применение нечеткой логики в имитационной системе автономного адаптивного управления» посвящена проблеме построения комбинированных систем управления на основе метода ААУ и других альтернативных хорошо разработанных и известных методов. В данном случае рассматриваются возможности объединения метода ААУ и нечеткой логики. Известно, что системы нечеткой логики родились в результате попытки программно формализовать знания человека-эксперта по управлению объектами, с последующей реализацией этого алгоритма управления на компьютере. Основой нечетких систем управления является запись опыта человека-эксперта в виде так называемых нечетких функций принадлежности. Например, указывается, какие значения угла и насколько именно эксперт связывает с понятием «сильный крен вправо», при распознавании которого он начнет выполнять соответствующий маневр. Нечеткие системы управления состоят в том, что нечеткие правила записываются в память системы управления заранее, а затем, в процессе управления они только используются управляющей системой. Автоматического построения или коррекции таких правил непосредственно в процессе управления в типичных нечетких системах не предусматривается. Тем самым, нечеткие системы не являются системами адаптивного управления в том смысле, который мы используем в системах ААУ. В данной работе М.В. Караваев показывает, как можно объединить технологии ААУ и нечеткую логику, чтобы в адаптивной системе управления автоматически формировать и корректировать базу знаний, представленную с помощью нечетких правил.
11
Тему применения нечеткой логики для построения систем управления продолжает статья В.Б.Новосельцева и Е.А.Романчук из Томского государственного университета «О манипулировании знаниями с использованием нечетких множеств». В работе предлагается удобный формализм для описания нечетких систем и модификация машины логического вывода, что позволяет использовать нечеткую логику при реализации "семантически-ориентированных" комплексов манипулирования знаниями. Статья C. А. Бондаренко, А. А. Жданова (ИСП РАН) и Б.М. Магомедова (ИОНТ РАН) «Принятие решений в автономных адаптивных системах управления, основанное на выявлении закономерных последовательностей действий» представляет результаты первых попыток решения в системе ААУ задачи автоматического обнаружения моделей поведения, описанной в статье А.А Жданова., Г.Я. Кантора и А.Б. Эфрона. Успешное решение этой задачи открывает путь для реализации 2-го и 3-го механизмов принятия решений. Как было сказано выше, обычно современные ИНС имеют некоторую тривиальную регулярную схему, например, каждый нейрон посылает свой выходной сигнал всем нейронам последующего слоя. Такое правило построения сети очень удобно, поскольку является простым. В принципе, оно органично соответствует существу традиционных распознающих ИНС, поскольку в них роль каждого нейрона состоит в делении признакового пространства на две полуплоскости. Это является промежуточной операцией в системе распознавания перед тем, как область, соответствующая распознаваемому образу, будет окончательно сформирована из таких полуплоскостей только в нейронах выходного слоя ИНС. Однако, такая топология не соответствует наблюдаемым свойствам биологической нервной системы. Это связано, по нашему предположению, с тем, что в нервной системе каждый нейрон соответствует отдельному образу (или его некоторой разновидности). В этом случае сеть становится семантической, где каждый нейрон и межнейронная связь имеют содержательный смысл, отражающий реальные взаимоотношения объектов в реальной среде, а такая сеть не может быть тривиально регулярной уже потому, что в реальной природе не может быть все соединено со всем или соединено в некотором тривиальном порядке. Однако и в традиционных ИНС полносвязность (даже межслойная) нейронов в некоторых случаях является излишней и исследователи ищут пути ухода от нее. Метод ААУ, в отличие от ИНС, опирается на то, что каждый нейрон соответствует одному образу, а сеть нейронов имеет содержательную семантику. Поэтому в системе ААУ нейроны могут быть соединены нетривиальным и нерегулярным способом, например, нейрон может получать на входы сигналы от нейронов, принадлежащих различным предыдущим уровням. Но в этом случае возникает непростая задача определения необходимой и оптимальной топологии нейросети для системы ААУ. При построении прикладных систем ААУ топология
12
нейросетей определялась, исходя из априорной информации об объекте управления. Однако было бы крайне желательно иметь обоснованный автоматический или автоматизированный способ определения структуры нейросетей для прикладных систем ААУ. Исследования некоторых авторов настоящего сборника посвящены поиску способов автоматизированного построения нейросетей для систем ААУ. Но, прежде всего, мы считаем целесообразным привести обзорную статью д.ф.-м.н. В.Г. Редько (ИОНТ РАН) «Анализ геометрического метода формирования модульной структуры нейронных сетей», рассказывающую об одном из существующих подходов к решению такого рода задачи, именно – «геометрическому методу», который оказывается достаточно универсальным и может быть применен к широкому классу нейросетевых систем управления. Статья Л.В. Земских, Е.К. Самарова, А.А. Жданова и В. Бабковой «Применение генетических алгоритмов для оптимизации адаптивной системы управления мобильного робота на параллельном вычислительном комплексе» содержит изложение некоторых найденных авторами решений задачи автоматического определения структуры нейросетей для системы ААУ. Здесь авторами также применен бионический подход, согласно которому, состав и структура нервной сети живого организма каждого биологического вида сформировалась в результате длительного естественного отбора на множестве поколений его предков. Программной реализацией такого естесственного отбора является известный метод «генетических алгоритмов», воспроизводящий все основные черты данного принципа оптимизации – кодирование признаков в генах, отбор наиболее удачных особей, взятие от них генетического материала для построения потомков, скрещивание и мутирование генов, генерация нового поколения и т.д. Нам представляется, что генетичсекие алгоритмы являются наиболее перспективным подходом для построения оптимальных (или субоптимальных) нейросетевых систем управления, работающих по методу ААУ. Помимо этого, данная статья представляет результаты решения и еще одной важной задачи, связанной с распаралеливанием вычислений в управляющей системе ААУ. Очевидно, что одно из важнейших отличий нервной системы, как машины для обработки информации, от современного компьютера состоит в том, что компьютер реализует фон- неймановский принцип последовательного выполнения команд программы, в то время как нервная система представляет собой сеть нейронов, работающих параллельно. Данное обстоятельство наделило нервную систему возможностями, многие из которых еще недоступны современным вычислительным машинам. В частности, несмотря на то, что отдельный нейрон работает не так уж и быстро, а скорость проводимости нервных импульсов по нервным волокнам не так уж и велика, мозг с огромной скоростью решает сложнейшие задачи распознавания, принятия решений и другие. Сегодня существуют технологии, позволяющие тем или иным способом организовывать параллельные вычисления. Конечно, достичь такой степени распараллеливания, которая имеет место в биологических нервных системах, удастся еще не скоро, поскольку отдельный нейрон слишком мал, а количество их 13
слишком велико для того, чтобы работу каждого нейрона реализовывать отдельным процессором. Однако уже сегодня можно предложить разные способы реализации систем ААУ на параллельных вычислительных системах, что и сделано в статье Л.В. Земских, Е.К. Самарова, А.А. Жданова, В.В. Бабковой (ИСП РАН). Модели нейронов и нейросетей в системе ААУ имеют мало общего с традиционными ИНС, как это следует, например, из сделанного выше описания системы ААУ. Однако авторы сборника постоянно предпринимают попытки найти способы объединения технологии ААУ и ИНС. В случае успеха это позволило бы взаимно обогатить обе технологии, заинтересовать и привлечь к исследованиям новых специалистов. Несмотря на то, что основные подходы в ИНС требуют предварительного обучения сети, что противоречит идее адаптивного управления, а также на то, что ИНС обладают проблемой катастрофического забывания, проявляющегося при попытке частичного переобучения или дообучения сети, было бы очень полезно найти способы обхода этих проблем. Основные посылки к поиску удачного решения состоят, по нашему мнению, в том, что а) некоторые виды ИНС, например, сети, построенные на основе теории адаптивного резонанса, все же способны к самообучаемости, т.е. имеют свойство адаптивности, и б) основные подсистемы системы ААУ можно, по-видимому, построить на основе самообучаемых систем распознавания. К данному направлению исследований относится статья А. В. Сыцко (ИСП РАН) «Система управления автономным мобильным роботом на основе адаптивного резонанса», которая представляет первые удачные попытки построения системы ААУ с использованием традиционных ИНС. Еще одним направлением, в котором авторы сборника ищут пути объединения метода ААУ с пограничными технологиями, является использование в системах ААУ теории детерминированного хаоса. Интерес к этому направлению вызван тем, что детерминированные хаотические системы, на наш взгляд, обладают одним весьма важным и удобным для адаптивного управления свойством, а именно - способностью в компактном и взаимосвязанном виде, имеющем, к тому же, свойства аттрактора, представлять очень длинные стринги данных, и распознавать их по предъявлению только небольшого фрагмента данных, причем не обязательно точных, а лишь попадающих в поле притяжения аттрактора. Идея применения детерминированного хаоса в системах ААУ связана с тем, что в виде аттрактора запоминаются определенные по смыслу протяженные фрагменты история эволюции объекта управления. Таким фрагментом может быть закономерная последовательность событий, вынужденно следующая при определенных условиях за тем или иным решением, предпринятым управляющей системой ААУ. Способность распознать такой фрагмент при предъявлении только его начальных шагов (условия) и планируемого действия вызывает в системе прогноз будущих событий (следствия), на основании которого и можно строить процедуру принятия решений. Текущие результаты наших исследований в этом направлении представлены в статье А.Е. Устюжанина
14
«Совмещение подходов адаптивного управления и детерминированного хаоса для построения эффективных автономных управляющих систем». Статья Д.Б. Липкевича и А.А. Жданова «AdCAS - система автономного адаптивного управления активной подвеской автомобиля» представляет один из результатов практического приложения метода ААУ. Прототип адаптивной системы управления активной подвеской автомобиля разработан в ИСП в ходе выполнения проекта AdCAS с компанией ATS Soft [П8]. Эта прикладная система управления построена с соблюдением всех специфических моментов, определяемых методом ААУ. Она демонстрирует способность адаптироваться в реальном времени управления к текущим свойствам управляемого ею автомобиля, и способствовать повышению устойчивости и управляемости автомобиля, подтверждая то, что метод ААУ является многоцелевым и многокритериальным. Обсуждение этого результата со специалистами показало, что аналогичного результата по управлению подвеской трудно добиться на основе других методов управления. Именно, нейросети и нечеткие системы требуют предварительного их обучения. Экспертная система не применима в условиях данного требуемого высокого быстродействия и необходимости автомаического переучивания. Управление на основе математических моделей объекта управления затруднительно в силу чрезмерной сложности построения модели автомобиля с учетом всех его осциллирующих и нелинейных элементов и изменчивости свойств в процессе движения. Статья представляет и принцип управления системы AdCAS и результаты компьютерных ее испытаний. Другое приложение метода ААУ представлено в статье А. Антипова «Применение метода ААУ к прогнозированию временных рядов». Многие практические задачи управления связаны с анализом и прогнозированием временных рядов данных. Одной из такого рода задач является анализ рынка ценных бумаг, на основании результатов решения которого принимаются те или иные действия или стратегии управления. Задача анализа временных рядов данных существенно усложняется, если объект, который характеризуется наблюдательными данными, непредсказуемо изменяет свои свойства. В этом случае решение могут дать адаптивные методы управления. Одна из главных трудностей здесь состоит в наличии очень большого числа степеней свободы, которые могут оставаться в системе даже после учета всей имеющейся априорной информации. Такого рода проблема связана, например, с определением рабочего словаря признаков, связанного с составом и рабочими характеристиками используемых датчиков. В статье показано, как можно автоматически настраивать признаковое пространство для системы ААУ с помощью метода конечных автоматов, основанных на работах Цетлина, Неймарка и Рапопорта.
очень удачным объектом для отработки системы ААУ и вариантов построения ее подсистем. Мы надеемся, что работы, посвященные этому роботу, составят следующий сборник. Хотим также выразить свою благодарность чл.-корр. РАН В.П. Иванникову, поддерживающему возможность продолжения исследований в данной области, а также всем сотрудникам отдела, аспирантам и студентам, принимавшим участие в работах и проектах отдела [П9]. Заведующий Отделом имитационных систем ИСП РАН, д.ф.-м.н. А.А. Жданов
Литература [П1] McCulloch W. W., Pitts W. 1943. A logical calculus of the ideas imminent in nervous activiti. Bulletin of Mathematical Biophysics 5:115-33. (Русский перевод: Маккаллок У. С., Питтс У. Логическое исчисление идей, относящихся к нервной деятельности. Автоматы. – М.: ИЛ. – 1956. [П2] Жданов А. А., Метод автономного адаптивного управления // Известия Академии Наук. Теория и системы управления, 1999, № 5, с. 127-134. [П3] Zhdanov A.A., A.V. Ryadovikov. Neuron Models in the Autonomous Adaptive Control Method//Optical Memory and Neural Network, Allerton Press, Inc., Vol. 9, No 2, 2000, pp. 115-132. [П4] Жданов А. А., Норкин Н. А., Гуриев М. А. Некоторые практические приложения метода автономного адаптивного управления // Сб. научн. тр. Искусственный интеллект в технических системах. Вып. № 19.- М.: Гос.ИФТП. 1998. С. 72-99. [П5] Alexander Zhdanov, Maxim Karavaev and Helen Maklakova, Claire Medigue, Michel Sorine. Simulation of control mechanisms in the cardio-vascular system. FrenchRussian A.M. Liapunov Institute for Applied Mathematics and Computer Science. Transactions. Vol. 4. Pp. 233-245. Moscow. 2003. [П6] А.А. Жданов, М.В. Крыжановский, Н.Б. Преображенский. Бионическая интеллектуальная автономная адаптивная система управления мобильным роботом (часть 1) // Мехатроника, 2004, №1, С. 21-30, (часть 2), №2, С.17-22. [П7] Жданов А.А. Земских Л.В. Беляев Б.Б. Система стабилизации углового движения космического аппарата на основе нейроноподобной системы автономного адаптивного управления. Космические Исследования, 2004, т. 42, №3, М.: 2004. С. 1-15. [П8] http://www.atssoft.com/ [П9] http://www.ispras.ru/groups/aac/aac.html
В некоторых статьях сборника в качестве примера объекта упрвления использована программная модель мобильного робота. Этот объект был выбран из-за его наглядности и возможности перехода в будущем к реальной физической модели. Данная компьютерная модель робота, которую авторы назвали «Гном №8», оказалась
15
16
сумма поступающих на блок подавляющих и возбуждающих сигналов больше некоторого порога, то блок работает по принципу "все или ничего" или выдает частоту, соответствующую количеству и временному порядку принятых сигналов.
Биологический алгоритм распознавания сильно скоррелированных образов
случайные связи
случайные связи
Академик А.Л.Микаэлян, Б.В.Крыжановский ретина
Работа выполнена при поддержке РФФИ (проекты №02-0100457, №01-07-90134) и программы "Интеллектуальные компьютерные системы" (проект 2.45).
область ассоциации
отклики R1 R2
Rn
Аннотация. Проведен анализ распознающей способности нейросети, способной хранить и обрабатывать информацию, закодированную в виде частотно-фазовой модуляции. Информативные сигналы в рассматриваемой сети передаются по межнейронным связям в виде квазимонохроматических импульсов на n разных частотах. За основу такой сети принят "параметрический" нейрон – обладающий кубической нелинейностью элемент, способный к преобразованию и генерации частот в процессах параметрического 4-волнового смешения. Показано, что с ростом числа несущих частот помехозащищенность рассматриваемой ассоциативной памяти резко возрастает. Одновре2
менно резко возрастает и объем нейросетевой памяти, которая в n раз больше аналогичной величины в стандартной сети Хопфилда. Число образов, которые способна сохранять такая нейросеть, может во много раз превышать число нейронов.
Стандартные нейронные сети не приспособлены для распознавания сильно скоррелированных образов и так называемых biased patterns. Помимо этого они обладают малым объемом памяти. Так например, сеть Хопфилда [1] может хранить всего лишь M N / 2 ln N рандомизированных N-мерных образов. При наличии корреляции между образами объем памяти (M) резко уменьшается. Имеющиеся отдельные алгоритмы для распознавания похожих образов, например метод проекционной матрицы [2], достаточно сложны, и не позволяют ввести простое обучающее правило, обладающее биологическим принципом локальности [3]. В то же время, человек достаточно легко выделяет образ среди множества похожих даже при наличии больших искажений. Такую способность можно объяснить, положив в основу модели распознавания принципы функционирования описанного Розенблатом [4] биологического фото-перцептрона: а). Воздействия попадают на ретину (рис.1), которая в одних моделях работает по принципу "все или ничего" (т.е. выдает одиночные импульсы при надпороговых воздействиях), а в других моделях - по принципу частотной или амплитудной модуляции. б). Импульсы передаются в область ассоциации, представляющую собой набор связанных между собой блоков. Если алгебраическая
17
Рис. 1. Биологический фото-перцептрон. Пунктиром выделена часть, моделируемая векторной нейросетью.
Из возможных вариантов формального описания биологического модели мы выберем один, наиболее оптимальный с нашей точки зрения. Во-первых, мы постулируем бинарность сигналов, формируемых в ретине, и случайный характер их передачи в ассоциативную область. Во-вторых, мы примем, что в блоках ассоциативной области формируются частотно-модулированные сигналы, которыми эти блоки и обмениваются. В принятых допущениях распознавание образа можно, условно, разбить на два этапа. На первом, набор бинарных сигналов по случайным связям попадает на блоки ассоциативной области, где преобразуется в набор частотно-модулированных сигналов, т.е. набор векторов. На втором этапе, происходит распознавание образа ассоциативной памятью: блоки ассоциативной памяти обмениваются частотно-модулированными (векторными) сигналами до тех пор, пока система не придет в стабильное состояние, соответствующее распознанному образу. Как будет видно далее, преобразование набора бинарных сигналов в набор векторных сигналов - это достаточное условие подавления негативного влияния корреляции на распознавание образов. Формальное описание этого процесса приведено в следующем пункте. Для описания работы ассоциативной области мы используем параметрическую модель нейронной сети, способной обрабатывать информацию, закодированную в виде частотно-фазовой модуляции [5]. За основу такой сети принят "параметрический" нейрон [6] – обладающий кубической нелинейностью элемент, способный к преобразованию и генерации Q частот в процессах параметрического четырехволнового смешения. Параметрическим нейроном мы будем моделировать работу целого блока ассоциативной памяти. Такой подход обоснован практически установленным фактом, что базовыми функциональными элементами, отвечающими за высокоуровневую деятельность
18
коры головного мозга, являются так называемые корковые колонки (блоки): сильно связанные группы нейронов, обладающие коллективными свойствами и способные к
вектор x 2 e1 . Соответствующее отображение примет вид Y X (x1 , x 2 ) . Существенно, что описываемое отображение взаимно однозначно, т.е. распознав отображе-
смешению частот и обработке частотно-модулированных сигналов (см. [7-10]). В [11] показано, что набору из Q частот можно поставить в соответствие набор Q ортогональ-
ние X можно однозначно восстановить его бинарный прообраз Y. Еще более существенно то, что процедура отображения практически сводит на нет имеющиеся корреля-
ных векторов и описание параметрической нейросети, оперирующей частотномодулированными сигналами, свести к описанию системы взаимодействующих спинов. Поэтому, дальнейшее описание мы проведем на языке векторной (спиновой) модели, более привычном для нейронных сетей. Формализм предлагаемой модели описан в п.3.
ции. Например, рассмотрим два бинарных фрагмента (0000000001) и (0000000011),
Мы покажем, что параметрическая нейросетевая модель, соответствующая описанной выше биологической модели, обладает огромным объемом памяти и способностью распознавать образы даже при исключительно больших искажениях и наличии корреляции. Суть предлагаемого здесь формального описания состоит в следующем. Пусть имеется семейство N-мерных бинарных векторов {Ym}, (m=1,2,…,M), искаженные образы которых предстоит распознавать. Необходимая для этого ассоциативная память организуется следующим образом: каждому образу Ym из пространства RN ставится в однозначное соответствие образ Xm в неком пространстве большей размерности; на семействе {Xm} строится ассоциативная память в виде описываемой ниже векторной нейросети. Процесс распознавания производится в следующем порядке: распознаваемый бинарный вектор YRN отображается в образ X и отображение предъявляется для распознавания векторной нейросети; при необходимости производится обратное отображение распознанного образа из в изначальное N-мерное пространство. Таким образом, задача распознавания большого числа бинарных коррелированных векторов сводится к задаче распознавания их отображений. Алгоритм отображения, позволяющий использовать векторную модель для распознавания сильно скоррелированных бинарных векторов, состоит в следующем. Пусть имеется некий N-мерный бинарный вектор Y ( y1 , y 2 , ..., y N ) . Мысленно разделим его на n фрагментов, содержащих по k+1 элементов каждый. Отдельный фрагмент можно рассматривать как целое число q , записанное в двоичном коде: первый элемент фрагмента определяет знак (0 - знак "минус", 1 - "плюс"), а остальные k элементов величину q (параметр k будем называть параметром отображения). Теперь фрагменту поставим в соответствие вектор x e q , где e q - это q-й орт некоторого Q-мерного пространства (Q=2k). Тем самым, всему образу YRN в целом ставится в однозначное соответствие набор Q-мерных векторов, т.е. образ X (x1 , x 2 , ..., x n ) . Например, вектор Y=(01001001) можно разбить на два фрагмента по четыре элемента (0100) и (1001). Первому фрагменту (это "4" в двоичном коде) ставим в соответствие вектор x1 e 4 в пространстве размерностью Q=8, а второму (это "+1" в двоичном коде) -
19
скоррелированных на 90%. Отличие фрагментов в одном только элементе приводит полному исчезновению корреляции между их отображениями в пространстве , каковыми являются различные орты e1 и e 2 соответственно. Рассмотрим полносвязную нейронную сеть из n нейронов, описываемых единичными векторами x i xi e (iq ) , где x i 1 , e (iq ) - орт Q-мерного пространства, i 1,2,..., n . Со-
стояние сети как целого определяется набором таких векторов X (x1 , x 2 , ..., x n ) . Гамильтониан сети зададим в виде [11], аналогичном модели Хопфилда H 12
n
x
i , j 1
i
Tˆij x j
M
Tˆij (1 δ ij ) x mi x mj
,
(1)
m 1
где x i - вектор-столбец, x i - вектор-строка, а величина межсвязи Tˆij между i-м и j-м нейронами - q q матрица, построенная по аналогии с обучающим правилом Хэбба
[3] на эталонных образах X m (x m1 , x m 2 ,..., x mn ) , m 1, 2, ..., M . Сеть (1) удобно интерпретировать как систему взаимодействующих Q-мерных спинов и использовать соответствующую терминологию. С учетом (1) входной сигнал на i-й нейрон, т.е. локальное поле действующее на i-й спин со стороны сети, запишется в виде: N
Q
j 1
q 1
h i Tˆij x j Aq(i ) e q
,
N
Aq(i ) j i
M
(e m 1
q
x mi )(x mj x j )
(2)
Динамика физической системы определяется естественным образом: i-й спин под воздействием магнитного поля h i принимает положение, наиболее близкое к направлению этого поля, т.е. состояние i -го нейрона в момент времени t 1 описывается выражением:
x i (t 1) s e max ,
(i ) s sign[ Amax (t )]
(3)
где индексом max обозначена максимальная по модулю амплитуда Aq(i ) Aq(i ) (t ) в разложении (2). Динамика системы в целом состоит в последовательном измении
20
состояний нейронов по правилу (3) и соответствует понижению энергии системы в процессе ее функционирования, т.е. алгоритм (3) сходится. Определим, насколько эффективно такая нейросеть распознает искаженные образы. Пусть на вход системы подан искаженный m-й образ, т.е. начальные состояния нейронов сети заданы в виде x i aˆ i bˆi x mi , где aˆ i - оператор мультипликативного шума, который с вероятностью a изменяет знак амплитуды x mi вектора x mi x mi e mi и с вероятностью 1 a оставляет его неизменным, оператор bˆ - с вероятностью b заменяет орт i
e mi {e q } на любой иной из набора {e q } и с вероятностью 1 b оставляет его неизменным. Сеть правильно распознает эталонный образ X m , если выход i-го нейрона, определяемый выражением (3), будет x i x mi . В противном случае произойдет ошибка распознавания, т.е. сеть вместо X m распознает иной образ. Для вероятности P этой ошибки, используя метод Чебышева-Чернова [13], детально описанный для данного рода задач в работах [5,6], получим: nQ 2 P n exp (1 2a ) 2 (1 b) 2 2 M
(4)
Полученное неравенство устанавливает верхнюю границу для средней вероятности ошибки в рассматриваемой нами нейронной сети с параметрами (n; M ; Q; a; b) . С ростом n эта граница сходится к нулю всякий раз, когда величина M как функция n растет медленнее, чем
M nQ 2
(1 2a ) 2 (1 b) 2 2 ln n
(5)
Из (5) видно, что с ростом Q помехозащищенность рассматриваемой ассоциативной памяти резко возрастает. Одновременно резко возрастает и объем нейросетевой памяти, в Q 2 раз больший чем в сети Хопфилда. Рис.2 демонстрирует большой объем памяти и высокую помехоустойчивость на примере сети из 180 нейронов с Q=32, в памяти которой записано 360 образов (32-цветных изображений), один из них - стилизованная буква "А". Сеть надежно распознает образ "А", у которого искажено 90% компонент за один цикл. При меньших искажениях (b70%) эта же сеть распознает до 1800 образов. Обратимся теперь к проблеме распознавания бинарных образов. Задав некоторое значение параметра деления k и применив описаное выше отображение к набору бинарных векторов Ym R N , m 1, M , получим соответствующий набор образов X m , на основе которых построим векторную ассоциативную память с параметрами: число нейронов векторной сети - n N /( k 1) , число состояний векторного нейрона - Q 2 k . Анализ проведем на примере "тенденциозных" образов (biased patterns), компоненты которых y mi - случайные величины, принимающие значения 1 и 0 с вероятностями (1 α) / 2 и (1 α) / 2 соответственно, ( 1 α 1 ). Пусть нам предстоит распознать ис~ каженный m-й образ Ym ( s1 y m1 , s 2 y m 2 ,..., s N y mN ) , где случайная величина si с вероятностью p изменяет значение бинарной переменной y mi и с вероятностью 1 p оставляет ее неизменной. Отображением этого вектора в пространстве является искаженный ~ m-й образ X m , который и предъявляется для распознавания векторной нейросети. Выражая мультипликативные шумы a и b, покрывающие отображение, как функции параметра p и подставляя соответствующие выражения в (4) для вероятности ошибки ~ распознавания искаженного отображения X m получим:
Это дает основание рассматривать величину (5) как асимптотически достижимую мощность ассоциативной памяти анализируемой нейронной сети. Сравнение (5) с аналогичными выражениями для параметрической оптической модели [5] и модели Поттса [12] показывает, что предложенная модель имеет в два раза больший объем памяти и, при прочих равных параметрах, может распознавать образы, искаженные на 20-30% сильнее. t=0
t=90
ν P n exp (1 α 3 μ ) 2 2 μ
(6)
где ν n(1 2 p) 2 (1 p) k ,
μ MA k /(1 p) k ,
A (1 α 2 )[1 α 2 (1 2 p)] / 4 .
При k=0 выражение (6) описывает функционирование модели Хопфилда. Анализ (6)
t=180
для данного случая показывает, что даже в отсутствие корреляций ( α 0 ) объем памяти не превышает относительно малого значения M 0 N / 2 ln N . А наличие даже небольшой корреляции ( α N 1 / 3 ) уменьшает число распознаваемых образов до велиРис.2 Распознавание буквы "А" , у которой искажены 90% пикселов (выделены серым цветом).
чины порядка α 3 , т.е. сеть практически перестает выполнять функции ассоциативной памяти.
21
22
С ростом параметра отображения k картина резко меняется. Сеть начинает функционировать как векторная модель, т.е. резко повышается объем памяти и снижается влияние корреляции. В частности, при небольших корреляциях, когда α 3 ν , для объема памяти из (6) получаем оценочное выражение: M M 0 [(1 p ) 2 / A] k
При большей корреляции, когда α 3 ν , объем памяти несколько ниже:
M α 3 [(1 p ) / A] k Однако и в том, и в другом случаях с ростом k имеет место экспоненциальный рост числа распознаваемых образов (рис.3) и рост надежности распознавания. На рис.4 показано, как с ростом параметра отображения спадает до нуля вероятность ошибки распознавания (кривые построены для корреляций =0.1, 02, 0.5, 0.6 при M/N=2 и искажениях p=20% ). Как видим, при достижении некоторого критического значения параметра отображения k вероятность ошибки резко спадает, т.е. негативное влияние корреляции резко уменьшается.
Рис.4 Уменьшение ошибки распознавания с ростом параметра отображения k
Как видим, соответствующая биологическому прототипу параметрическая модель де монстрирует большойpобъем памяти и способность распознавать похожие образы. Основное допущение при моделировании состояло в том, что бинарные сигналы от фоторецепторов преобразуются в частотно-модулированные сигналы, которыми оперирует ассоциативная память. В проведенном выше анализе мы никак не использовали случайность связей между ретиной и ассоциативной областью, хотя она может играть большую роль в декорреляции распознаваемых образов. Действительно, в большинстве случаев образы заполняют сплошь целые фрагменты рецептивного поля и топологическое отображение в векторное пространство при небольшом значении параметра k не приводит к декорреляции. Однако, случайность передачи сигналов от рецепторов в ассоциативную область сводит на нет такую корреляцию. На алгоритмическом языке сказанное означает, что нумерацию компонент бинарных векторов полезно производить случайным образом, чтобы избежать фрагментарной корреляции. Очевидно, что процесс распознавания образов мозгом значительно сложнее рассмотренной выше модели. Однако, если эта модель хоть как-то соответствует реальности, то можно утверждать, что размер биологической ассоциативной памяти и ее распознающая способность на порядки выше оценок, предлагаемых бинарными моделями, не учитывающими частотно-модулированный характер кодировки информации.
Рис.3 Рост объема памяти с ростом параметра отображения k (p=0.1 ÷ 05).
23
24
Действительно, нейронная колонка коры головного мозга (в нашей модели - это Qмерный нейрон) содержит около 100 нейронов, соединенных возбуждающими и тормозящими связями, и может генерировать сигналы на различных частотах, число которых можно оценить как Q20÷40. Как следует из (5), при таком количестве частот ассоциативная память из таких колонок имеет огромный объем. Даже при весьма умеренном числе частот Q10 объем ассоциативной памяти почти на два порядка превышает значения, характерные для сетей Хопфилда (см. рис.3). Проведем некоторые оценки. Характерный линейный размер нейронной колонки порядка 400мкм. При скорости распространения сигналов по межсвязям ~0.1м/с возбуждение за время ~1.5мс (длительность нервных импульсов) охватывает пространство с линейными размерами ~1мм, на котором размещается порядка n~30÷50 колонок, вовлекая их в процесс одновременного возбуждения и анализа информации. Это означает, что участок коры головного мозга площадью ~1мм2 способен запомнить M~103÷104 бинарных 150-мерных образов и в течение нескольких милисекунд распознавать один из них.
Литература 1. Hopfield J.J. //Proc.Nat.Acad.Sci.USA. 1982. V.79. P.2554-2558. 2. Personnaz L., Guyon H., Dreyfus G.// Phys.Rev.A. 1987. V.34. P.4217-4227. 3. Hebb D.O. The Organization of Behavior. N.Y.: Wiley, 1949. 4. Rozenblatt F. //Psychological Review. 1958. V.65. P.368-408. 5. Крыжановский Б.В., Микаэлян А.Л.// ДАН. 2002. Т. 383, №3, с.318-321. 6. Kryzhanovsky B.V., Mikaelian A.L. et al.// Opt.Mem.&Neural Nets. 2001. V.10. P.211218. 7. Annios P.A., Beek B., Csermely T.J. and Harth E.M..// J.Theor.Biol.. 1970. V. 26. P.121148. 8. Usher M., Schuster H.G.and Neibur E.//Neural Computation. 1993.V.5, P.370-386. 9. Farhat N.// SPIE’2000, San-Diego, 2000. P. 158-170,. 10. Hoppensteadt F.C., Izhikevich E.M.//IEEE Trans.Neural Nets. 2000. V.11. P.734-738. 11. Крыжановский Б.В., Литинский Л.Б.// Искусственный интеллект. 2002. Т.4. C.710718. 12. Kanter I. // Phys.Rev.A. 1988. V.37(7). P. 2739-2742. 13. Chernov N. //Ann. Math. Stat. 1952. V.23. P.493-507.
25
воздействию yi{Y} соответствует строго определенное изменение состояния множества {X} параметров по таблице этого автомата (Табл. 1).
Логический адаптивный управляющий автомат с конечным числом входов1
СРЕДА
{X} …
Жданов А.А., Кантор Г.Я., Эфрон А.Б. …
Аннотация. Рассматривается структура логического автомата с гомеостазисной стратегией поведения, вытекающая из допущения, что количество переменных, описывающих динамику среды, значительно превышает количество входных переменных автомата, которые в свою очередь должны дифференцироваться, в частности, на контролируемые и неконтролируемые. Информационный подход к моделированию высшей нервной деятельности предполагает дискретное представление этих процессов. Основаниями для этого служат, с одной стороны - наблюдаемый на практике дискретный характер физиологических процессов в нервной системе, а с другой – дискретный характер логики. Однако дискретному представлению величин присущи понятия конечности и размерности. Это относится и к множествам элементов, участвующих в информационно-логических процессах управляющей нервной системы (УНС). Представляется существенным, что учет размерностей и конечности множеств приводит к соответствующей качественной организации УНС и необходим при ее моделировании.
…
{Y}æ {Y} {X}M
СУБЪЕКТ
Рис. 1. Представление среды и субъекта в виде логических автоматов со следующими переменными: {Y} - воздействия, которые можно оказать на среду, {Y}æ - воздействия, которые может оказать на среду субъект, {X} - параметры среды, изменяющиеся при совершении воздействий, {X}M - параметры среды, каким-либо образом воздействующие на субъекта. Код воздействия
В нашей работе рассмотрены структурные особенности УНС, которые вытекают из ее дискретного характера. Предполагается, что конструктивно закрепленной стратегией субъекта (так будем называть объект, управляемый УНС), является обеспечение гомеостазиса, а закономерности среды, в которой существует субъект, также могут иметь дискретное представление. Философским обоснованием последнего допущения может служить необходимое тождественное соответствие отражаемого и отражающего объектов.
Воздействие на среду y1 y2 y3 … y2 N
Реакция среды x1 x2 x3 … xN
y1
1 0 0 …
0
-1 -1 -1 … -1
y2
0 1 0 …
0
-1 -1 -1 … +1
… y2 N
…
… …
0 0 0 …
1
+1 +1 +1 … +1
Опишем динамические свойства среды в терминах логического двоичного автомата с базисом (+1, -1), у которого имеется множество {Y} входов, размеренность которого 2N и множество {X} выходов, размеренностью N (рис. 1). Каждому определенному Таблица 1. Закон соответствия реакций среды на возможные воздействия на нее.
1 По материалам статьи А.А. Жданов, Г.Я. Кантоp, А.Б. Эфpон, И.Г. Hовикова. Построение гомеостазисного автомата с конечным количеством входных переменных. (Депонированная работа) ВИHИТИ "Депониpованые научные работы", 1984, N2, стp.108, 336. 17 стp.
27
28
Код поступка
y4
y3
y2
y1
{R}p x1 x2
y1
0
0
0
1
-1 -1
y2 *
0
0
1
0
-1 +1
y3
0
1
0
0
+1 -1
y4
1
0
0
0
+1 +1 **
Например, часть из них ни разу не была возбуждена каким-либо воздействием, и можно сказать, что только {R}p - часть от {X}P параметров «контролируется» субъектом. С другой стороны, некоторые воздействия из {X}M, не вошедшие в {X}P, тоже контролируются субъектом, который с помощью каких-либо инструментов переводит данные воздействия в форму, доступную для некоторых рецепторов. Поэтому контролируемые параметры составляют множество {X}p. Имеют место следующие соотношения множеств изображенных на рисунке 1. {X}M {X},
**
контур выделяет запрещенную комбинацию изменений параметров, т.е. запрещенный поступок.
{R}p = {X}p {X}P ,
*
выбранному поступку, например y2, соответствуют следующие возможные комбинации
{X}p {X}P {X}M .
x1 x2 y2
x3 x4 … xP
-1 +1 -1 -1 … -1
УНС
-1 +1 -1 -1 … +1 . . .
…
{X}M
-1 +1 +1 +1 … +1
{R}p
{X}
{X}p
{X}P
Таблица 1а. Известная субъекту часть таблицы 1. Субъект, как часть среды, также может быть представлен в виде логического автомата (рис. 1). Входным множеством по отношению к субъекту является множество {X}M параметров, принадлежащие {X}, выходным является множество {Y}æ поступков, принадлежащее {Y}, æ ≤ 2M. Необходимый в рамках принятой стратегии закон поведения этого автомата является предметом нашего рассмотрения. Следует отметить, что остаток (разность множеств) {X} \ {X}M замыкается непосредственно на {Y} или частично на других субъектов, которые также могут воздействовать на среду частью множества {Y} воздействий. Рассмотрим подробнее множество {X}M воздействий, относящихся к субъекту. Очевидно, что часть из них - {X}P наиболее важная для жизни, у приспособившихся к ней субъектов (организмов) снабжена соответствующим количеством Р рецепторов, которые являются началом Р цепей УНС. Все Р цепей потенциально могут активно участвовать в управлении субъектом. Однако у конкретно взятого субъекта, имеющего конкретную историю жизни, до настоящего момента времени не все Р цепей участвовали в управлении. 29
Рис. 2. Отношение субъекта к параметрам среды. {X} - параметры среды. {X}M - параметры воздействующие на субъекта, {X}P - параметры, которым у субъекта соответствуют рецепторы (зачерченные треугольники), {R}p - рецепторы (параметры), непосредственно контролируемые субъектом, {X}p - контролируемые субъектом параметры. Остановимся пока на воздействиях {X}P, попадающих на рецепторы. Поскольку управляемый субъект, в главном, приспособлен к параметрам влияющих на него воздействий среды, то значительно большее значение для УНС имеет информация об изменениях амплитуды этих воздействий, поскольку именно она дает представление о динамических законах среды (Табл. 1). Поэтому только информация об изменениях воздействий должна передаваться в цепи УНС, что проще и в техническом смысле, чем передача информации об абсолютных значениях воздействий. Приращения различных
30
воздействий выявляются соответствующими рецепторами и кодируются одинаковыми по своему физическому представлению сигналами, например, +1 или –1. Известно, что по такому принципу, называемому дельта-модуляцией, работают, в частности, ганглиозные клетки сетчатки глаза, система волосковых, рецепторных и нервных клеток слуховой структуры. Суммируя такие сигналы, поступающие по данной цепи последовательно во времени, и зная «вес» информации, контролируемой данным рецептором, можно получить некоторую сумму – аналог абсолютного значения внешнего воздействия в данный момент времени. Механизм придания «веса» различным входным цепям имеет, как будет рассмотрено ниже, весьма большое значение в деятельности УНС. Здесь отметим, что это – первое преобразование, которое выполняется в УНС с поступающей по цепи от рецепторов информацией в виде единичных импульсов. Запишем сигнал в j-й цепи после присваивания ему веса рj как рj xj(t),
где xj(t) = xj(t) - xj(t-1) = (+1) (-1),
а xj {X}P.
В УНС, как отмечалось выше, должен быть аналог абсолютных значений входных воздействий. Ими являются накапливаемые во времени по каждому каналу j суммы Rjt = t рj xj(t), образующие множество {R}p , где сумма берется по t от t = 1 до t = tнаст. Такие суммы могут использоваться для двух целей. Во-первых, они дают представление о степени соответствия абсолютного значения j-го внешнего воздействия допустимым для субъекта значениям. Соответствие устанавливается при сравнении Rjt с некоторой j-й шалой, определяющей области «комфортных», «дискомфортных» и недопустимых значений Rjt. Такие шкалы должны иметь место в УНС благодаря генотипу, т.е. быть жестко заданными в конструкции УНС. Во-вторых, {R}p после сравнения со своей шкалой используется для определения некоторой оценки общего состояния субъекта, т.е. того функционала от параметров, который обычно максимизируют в таких задачах. Назовем этот функционал «эмоциональной оценкой общего состояния» Eэt. Eэt = j Rjt . Для управления поведением необходимо также иметь приращение Eэt, т.е.
времени в областях памяти, которые назовем «Память Эмоциональных Состояний» и «Память Эмоциональных Приращений». Вернемся к множеству значений параметров {R}P и вспомним, что в управлении участвуют не все Rj из {R}P, а только их часть {R}p. В самом деле, ребенок от рождения не испытавший перегревания или переохлаждения при выборе поступков до некоторого времени не принимает во внимание температурного параметра. Основной процесс выбора субъектом поступка воздействия на среду состоит в том, что субъект выбирает по известной ему части Таблицы 1 такой поступок yi, который приведет к желаемому изменению состояния контролируемых параметров {X}p. Желаемым изменением является конструктивно закрепленное стремление передвинуть значение каждого параметра Rjt по возможности во все более «комфортную» область, при этом изменениям в первую очередь должны подвергнуться параметры, находящиеся в наиболее «дискомфортном» состоянии. Процесс отыскивания и упорядочивания параметров по убыванию их «дискомфортности» – это процесс последовательный, совершаемый УНС с конечной скоростью. Однако на выбор поступка субъекту отводится конкретный отрезок времени Т, который определяет количество k наиболее дискомфортных параметров, которые можно будет учесть при выборе поступка, k T / t. Для передачи в УНС временного параметра T в конструкции субъекта не существует «черного хода». Время T является внутренней величиной, вырабатываемой самой УНС и, по необходимости, у жизнеспособного субъекта должно быть адекватно объективным потребностям. Для выработки величины k = T / t в УНС используется функционал Eэt и его приращение Eэt, а более точно – их отображения Sэt и Sэt, полученные от сравнения Eэt и Eэt с их закрепленными в УНС шкалами, определяющими комфортные и дискомфортные области значений Eэt и Eэt. Функция f, выражающая зависимость k = T/t = f (Sэt , Sэt) грубо может быть представлена поверхностью, изображенной на рисунке 3. Вид функции f (Sэt , Sэt) не обязательно монотонный и варьируется у различных субъектов, определяя, возможно, их темперамент – сангвинический, холерический и т.д.
Eэt = Eэt - Eэ(t-1) . Механизм влияния Eэt и Eэt на управление будет рассмотрен немного ниже, здесь отметим только, что значения Eэt и Eэt в УНС должны запоминаться последовательно во
31
32
команде «совершить поступок с номером n», из «Памяти программ механического совершения поступков», которая хранит такие программы, извлекается необходимая nя программа. Это программа управляет последовательными движениями соответствующих органов, чем обеспечивается выполнение поступка yn, т.е. воздействие на среду.
0 ≤ k ≤ kc , 0 ≤ Sэt , - Sкр ≤ Sэt,
Рис. 3. Зависимость k = f (Sэt , Sэt), описывающая внутренние системные часы УНС. Найдя k дискомфортных параметров с номерами i, образующими множество {i}k, и расставив в i-х позициях соответственно +1 или –1, субъект получает по известной ему части таблицы 1 некоторый недоопределенный номер M поступка YM, который выделяет целый класс {Y}M возможных с точки зрения субъекта поступков, приводящих к ожидаемому результату. Известная пользователю часть таблицы 1 хранится в его памяти, в области, которую можно назвать «Память Возможных Поступков», и представляет собой фрагмент таблицы 1, ограниченной p параметрами xi и , соответственно, L параметрами Y, при этом L ≤ 2 p, а таблица этой памяти может содержать запрещенные и неопределенные поля позиций. В большинстве случаев реализуется ситуация, когда k 0}. Понятие подмножества D`D при этом переопределяется следующим образом: D` {eCD|mD`(e)}.
2. Оценка подобия Отношением подобия в теории нечетких множеств называется любое бинарное отношение, заданное на некотором множестве E и обладающее свойствами рефлексивности и симметричности; если к тому же оно обладает свойством транзитивности, то это уже отношение сходства. Аналогом этого отношения в классической теории множеств служит отношение эквивалентности, но это достаточно «сильное» отношение. Построим оценку подобия нечетких подмножеств A и B «четкого множества» E следующим образом: l(A,B)=1-(A,B), где (A,B) есть относительное расстояние Хэмминга либо относительное евклидово расстояние. Доказательство симметричности этой оценки вытекает из симметричности (по определению) расстояния (A,B). Рефлексивность же легко выводится из антирефлексивности и ограниченности (A,B). Таким образом, мы действительно имеем оценку подобия нечетких подмножеств A и B «четкого множества» E.
56
3. Нечеткие и лингвистические переменные. Основные понятия Достаточно нетривиальной является задача трансляции значения лингвистической переменной в нечеткое подмножество базового множества для данной переменной, а уж тем более сложна задача обратной трансляции. – Здесь возможно наложить несколько ограничений на вид функции принадлежности. К примеру, функция принадлежности должна иметь вид «колокольчика» в середине базового множества, и вид «полуколокольчика» на концах. Подобное ограничение допустимо, если не будут использоваться фразы типа: «не маленький» или «маленький или очень большой». Тогда задача трансляции «нечеткое множество – фраза» и обратная ей существенно упрощаются. Примем определения и обозначения, касающиеся нечетких и лингвистических переменных, введенные в [2, 5], незначительно их пополнив. Определение 1: Объектом предметной области называется любой факт, предмет или событие X предметной области удовлетворяющее «четкому» предикату is(X) (для текущего состояния предметной области). Определение 2: Контекстом объекта или множеством нечетких атрибутов назовем совокупность нечетких переменных, если для каждой из них помимо наименования задано еще и имя лингвистической переменой значением которой они могут являться.
В силу упорядоченности семантика подобного множества сохранится, даже если в каждом его элементе отбросить первую часть, получив при этом однородный вектор со значениями элементов принадлежащими M=[0,1]. Теперь мы имеем право говорить о расстоянии между состояниями схемы как о расстоянии между нечеткими упорядоченными множествами или векторами. 4. Динамика В свое время Заде выдвинул идею о том, что нечеткая переменная (в контексте нечеткого подмножества) может, в определенных случаях, рассматриваться как распределение возможностей или субъективных вероятностей. Мы, в свою очередь, любое событие предметной области (совершенное или прогнозируемое) представляем в виде нечеткой переменной, то есть в качестве распределения субъективных вероятностей. Таким образом, представляется возможным построение событийного аппарата на механизмах сопоставления и выборки нечетких множеств-событий. Для ознакомления с существующими методами нечеткого логического вывода на сопоставлении можно обратиться к соответствующему обзору в [6]. В данной работе немного пересмотрена концепция многоуровневого выбора (см. [2,7]) и структура вида: if EVENT… then … else_if … then … else_if … fi … fi … fi
Пример 2. Зададим контекст объекта - предприятия.
естественным образом заменяется на
Определение 3: Пусть P – прямое произведение n множеств и M – его множество принадлежностей; нечеткое n-арное отношение E определяется как нечеткое подмножество P, принимающее свои значения в M. Определение 4: Связью между объектами A и B назовем элемент нечеткого бинарного отношения Е, определенного на множестве объектов-знаков и принимающего свои значения в M=[0,1], обладающий следующими свойствами: а) Каждая связь имеет функцию доступа от первого элемента ко второму, называемую ролью – имя бинарного отношения, другими словами семантика отношения. б) Каждая связь имеет вес – скаляр из отрезка [0,1] – множества принадлежности отношения E, описывающий возможность существования данного отношения между объектами A и B. Определение 5: Текущим состоянием схемы назовем упорядоченную совокупность объектов, всех контекстов для данного объекта и бинарных отношений между парами объектов, на которых определены связи в фиксированный момент времени. Текущее состояние схемы может быть выражено с помощью нечеткого упорядоченного множества, элементами которого являются , элементы контекстов как Объект2)/Вес_связи>. нечеткие множества,