Дорофеев Н.В., Сапожников А.А. Шубин Е.С.
Решение экзаменационных задач по математике за 11 класс учебно-практическое п...
29 downloads
400 Views
836KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Дорофеев Н.В., Сапожников А.А. Шубин Е.С.
Решение экзаменационных задач по математике за 11 класс учебно-практическое пособие
ЭКЗАМЕН
МОСКВА 2001 2
Оглавление Раздел 1. Задания 1–5 для экзаменов «Математика» и «Алгебра и начала анализа»..................4 Раздел 2. Задания 6,7 для экзамена «Математика»........98 Раздел 3. Задание 8 для экзамена «Математика» .........158 Раздел 4. Задание 9,10 для экзамена «Математика». Задание 6,7 для экзамена «Алгебра и начала анализа».............................................210 Тригонометрия................................................................................210 Степени и логарифмы ....................................................................221 Производная и ее приложения ......................................................243
Раздел 5. Задание 8 для экзамена «Алгебра и начала анализа».............................................251 Тригонометрия................................................................................251 Иррациональные уравнения ..........................................................258 Степень и логарифмы ....................................................................266 Производная и ее приложения ......................................................273
Раздел 6. Задание 9,10 для экзамена «Алгебра и начала анализа».............................................281 Уравнения .......................................................................................281 Модули ............................................................................................324 Параметры.......................................................................................346 Неравенства ....................................................................................353 Возрастание, убывание, экстремумы, наибольшие и наименьшие значения ..........................................370
Вариант экзаменационного задания по курсу «Математика».....................................................................379 Вариант экзаменационного задания по курсу «Алгебра и начала анализа...................................................382
3
Раздел 1. Задания 1–5 для экзаменов «Математика» и «Алгебра и начало анализа» Вариант 1. х − 4x2 х( 4 x − 1 ) >0; 0 , 2 x − 1 = 8;
x > 0 ,5 х=4,5. x = 4 ,5;
Ответ: 4,5. 3. 2sinх+1=0, [0; 2π]. 2sinх=−1; sinх=−
π 1 ; х=(−1)k+1 6 +πk, k∈Z. 2
Из этих корней промежутку [0,2π] принадлежат только Ответ:
7π 11π и 6 6
7π 11π ; . 6 6
4. а) D(f)=[−2,5; 6]; б) функция возрастает на промежутке [−2,5; −0,5]; функция убывает ан промежутке [−0,5; 6]; в) f(x)=0 при х=−1,8 и х=1,5; г) max f(x)=3,5, min f(x)=f(6)=−5,5; д) −40,125; 82х+1> ; 82х+1>8−1; (у = 8t − функция возрастающая); 2х+1 >−1, х>−1. Ответ: (−1; ∞). 3. 2sin(х+
π )+ 2 =0; 2
2cosх + 2 = 0; cos х = Ответ: ±
− 2 3π , х=± + 2πk, k ∈Z. 2 4
3π + 2πk, k ∈Z. 4
4. f(x) = 2x2 + tg х; f′(x) = 4х + Ответ: 4х +
1 cos 2 x
1 cos 2 x
.
.
8
2
5. S= ∫ ( x 2 + 5 x + 6 )dx =( −1
x3 5 x 2 + +6х) 3 2
2 = −1
8 1 5 =( +10+12)−(− + −6)=28,5. 3 3 2
Ответ: 28,5. Вариант 6 1.
54 − 6 x 2 6( x 2 − 9 ) 0. 4x + 7 4x + 7
Пусть f(x)=
6( x 2 − 9 ) 3 3 определена на (−∞; −1 )∪(−1 ; ∞); 4x + 7 4 4
f(x) = 0 при х = −3 и х = 3.
3 )∪(3; ∞). 4 3 Ответ: х ∈ (−3; −1 )∪(3; ∞). 4
х ∈ (−3; −1
1 3
2. 3х−( )2−х=24; 3х−3х−2=24, 3х−
1 х 8 ⋅3 =24, ⋅3х=24, 3х=33, х=3; 9 9
или 3х−2(32−1)=24; 3х−2⋅8=24; 3х−2=3; х−2=1; х=3. Ответ: 3. 3. cos х +cos (
π −х) +cos (π + х) = 0; 2
cos х + sin х − cos х = 0; sin х = 0, х = πk, k ∈ Ζ. Ответ: πk, k ∈ Ζ.
9
4.
5. Абсциссы точек касания найдем из уравнения f′(x0)=0: 5х04−10х0=0; 5х0(х03−2)=0; х0=0 или х0= 3 2 . Найдем ординаты точек касания: f(0)=1, f( 3 2 )=( 3 2 )5−5( 3 2 )2+1)=( 3 2 )2( 3 23 −5)+1= = 3 4 (2−5)+1=1−3 3 4 . Имеем А(0; 1), В( 3 2 ; 1−3 3 4 ). Ответ: (0; 1), ( 3 2 ; 1−3 3 4 ). Вариант 7 3
2
3
1. 9 2 + 27 3 −( (
3
2
3
− 1 −4 ) = ( 32 ) 2 + ( 33 ) 3 − ( 2− 4 ) 4 =33+32−23=28. 16
Ответ: 28. 2. log4(7 −х) < 3. Неравенство равносильно системе: 7 − x > 0, 7 − x < 43 ;
x < 7, −57<x −57;
Ответ: (−57; 7). 3. (sin х + cos х)2 = 1 + sin x cos x; sin2x+2sinx cosx + cos2х = 1 + sin х cos х; sin х cos х = 0;
1 sin2x = 0; sin 2x = 0; 2
2х =πn, n∈Z, 10
x=
π n, n∈Z. 2
x = 0 x = π π 2 х = n ,n ∋ z ⇔ x π = 2 0 ≤ x ≤ 2π 3π x = 2 x = 2π
Ответ: 0;
π 3 ; π; π; 2π. 2 2
4. а)D(f)=[−3,5; 6]; б) −2,5 ≤f(х) ≤ 1,5 при x∈ [−3,5; −2,7] и [−0,5; 0,8]∪[3; 3,75]; в) f′(x) > 0 – (−3,5; −1,5) и (2; 6); f′(x) < 0 – x∈(−1,5; 2); г) xmax=−1,5, xmin=2; д) min f(x) =f(2)=−3,5; max f(x) =f(6) = 5,5. 5. F′(x)=(x3-3x+1)′=3x2-3=3(x2-1)=f(x) Ответ: является. Вариант 8 1. 251,5+(0,25)−O,5−810,75; 3
(52)1,5 + (0,52)−0,5 − ( 34 ) 4 = 53 + 2 − 27 = 100; Ответ: 100. 4 − 3 x > 0 , 1 4−3x>3; x< . 0 ,5 3 4 − 3 x > 9 ;
2. log9(4−3x)>0,5; Ответ: (−∞; 3. sin(
1 ). 3
π π −x)=sin (− ); 2 4
2 3π , x=± + 2πk, k∈Z. 2 4 3π Ответ: ± + 2πk, k∈Z. 4
cos x = −
11
4.
5. S=5t−0,5t2; v=S′(t), S′= 5 − t, v(2) = 5 − 2 = 3 (м/с). Ответ: 3 м/с. Вариант 9 1.
( x + 5 )( x − 7 ) >0. 3x − 1
Пусть f(x) =
1 1 ( x + 5 )( x − 7 ) ; f(x) определена на (−∞; )∪( ; ∞), 3x − 1 3 3
f(x) = 0 при x = −5 и x = 7.
x∈(−5;
1 )∪ (7; ∞). 3
Ответ: (−5;
1 )∪ (7; ∞). 3
2. 3x+2 − 5⋅3х = 36; 9 · 3x − 5·3x = 36; 4 · 3x = 36, 3x = 32, x = 2. Ответ: 2. 3. (sinx + 1)2 = sin2 x + 1; sin2 x + 2 sin x + 1 = sin2 x + 1; 2 sin x = 0; x = πn, n∈Ζ. Если 0 ≤ πn ≤ 2π, το 0 ≤ n ≤2, тогда x = 0; x = π; 12
x= 2π. Ответ: 0; π; 2π. 4.
5. f(х)=х2−5; F(x)= 4=
x3 −5x+C. 3
π 33 −5·3+С, 4=−6+С, С=10, F(x)= −5x+ 10. 3 4
Ответ:
x3 −5x+ 10. 3
Вариант 10 1.
2x + 8x2 2 x( 4 x + 1 ) 0;
x − 1 ≤ 6, x > 1;
x ≤ 7, 1 1;
Ответ: (l; 7]. 3. 2cos x + 2 =0; cos x = −
2 3π , x=± +2πk, k∈Z. 2 4 3π 5π
Из этих корней только корни Ответ:
4
и
4
∈ [0,2π]
3 5 π; π. 4 4
4. a) D(f)=[−3;5,5]; б) у= 0 при x = 0,7 и x =4,3; в) функция возрастает на промежутках [−1,5; −0,5] и [2; 5,5]; функция убывает на промежутках [−3; −1,5] и [−0,5; 2]; г) max f{x)=f(−3) = 5,5 ; min f(x)=f(2)=−2,5; д) касательные параллельны оси абсцисс в точках экстремума: (−1,5; 3) и (2; −2,5). 5. у = 2x3 − 3x2 − 36x; y′ = 6x2 −6x−36; 6x2 − 6x − 36 > 0 | : 6; x2 − x − 6 > 0; (x + 2)(x − 3) > 0;
Ответ: возрастает на (−∞; −2] и на [3; ∞). Вариант 11 1.
2
2
8x − 2 2( 4 x − 1 ) >0; 0; >0. 3( 2 x − 1 ) 3 − 6x
Пусть f(x) =
2 x( 4 x − 1 ) ; 3( 2 x − 1 )
15
f(х) определена на (−∞; 0,5)∪(0,5; ∞); f(x) = 0 при x = 0; х =
1 4
Решим неравенство методом интервалов:
1 1 4 2
Ответ: x∈ (−∞; 0) ∪ ; . 2. 21og32−log3(x−1)=1+log35; x−1 > 0; log34−log3(x−1)= log33 +log35; log3
4 =log315; x −1
4 4 =15, 15x−15=4, x=1 . x −1 15 4 Ответ: 1 . 15
3. 2cos
x − 3 =0; 4
3 x x π 2π = , =± +2πk, k∈Z; x=± +8πk, k∈Z. 4 2 4 6 3 2π Ответ: x=± +8πk, k∈Z. 3
cos
4.
16
1 3
5. f(x)= x3+5x2−1. ′
1 3
f′(x)= х3 + 5 х 2 − 1 = х 2 + 10 х
2
x +10x=0; x1=0, x2=−10. y1 =−1, y2=165
2 . 3
Ответ: (0; −1), (−10; 165
2 ). 3
Вариант 13 1. y=lg
x−2 ; 4x − 1
x−2 > 0, 4x − 1 4 x − 1 ≠ 0
Ответ: (−∞; ¼)∪(2; ∞). 2. 1002x+1 −0,5;
2 x + 1 = 39 , x = 19, x=19. x > −0 ,5; x > −0 ,5;
Ответ: 19. 21
3. 2sinx+ 3 =0; sinx=−
π
3 ; x=(−1)k+1 3 +πk, k∈Z. 2
x=π+π/3 или х=2π-π/3 х=4π/3 х=5π/3 Ответ:
5 4 π; π. 3 3
4.
5. f(x)=2х2 +3; 2 3
F(x) =− х3 +3x+C; F(–2)=–5 2 19 ⋅ ( −2 )3 − 6 + С = −5 ; С= 3 3 2 3 19 Ответ: х + 3 х + . 3 3
Вариант 18 4x − 9x2 x( 9 x − 4 ) ≥0; ≥0. 10 − x x − 10 x( 9 x − 4 ) Пусть f(x)= ; x − 10
1.
f(x) определена на (−∞; 10)∪(10; ∞); f(х)=0 при x = 0 и x=
4 . 9
Решим неравенство методом интервалов:
22
Ответ: (0;
4 ]∪(10; ∞). 9
log 0 ,5 ( 3x − 1 ) = log 0 ,5 8, 3 x − 1 = 8, x=3. 3 x − 1 > 0; 3 x − 1 > 0;
2.
Ответ: 3. 3. 2cos x + х =π ±
3 = 0, [0; 2π]; cos x = −
π
3 , 2
6 5π 7π Ответ: ; . 6 6
4. а) D(f) = [−3,5; 6]; б) f(x) > 2 при x∈(−1; 2,5)∪(5,5; 6); в) функция возрастает на промежутках [−3,5; 1] и [4; 6]; функция убывает на промежутке [1; 4]; г) f′(x)=0 при x=1 и x=4; д) max f(x) =f(1)=4,5; min f(x)=f(−3,5)=−4.5. 5. y=2x3+9x2−24x; y′=6x2+18x−24; x2+3x−4≤0; (x−1)(x+4)≤0.
−4≤ x ≤ 1. Ответ: [−4; 1]. Вариант 19 1.
3 x 2 − 27 3( x + 3 )( x − 3 ) 3( x + 3 )( x − 3 ) 0. т.к. Д0 равносильно неравенству x−1>0, x −1
x>1. 24
Ответ: (1; ∞). 2. log5(3x+1) 0; x > − 3 ; 1 − <x − 3 ;
8 π , − <x 0, x+7 x + 7 ≠ 0;
x∈(−∞; −7)∪(1,5; ∞). Ответ: (−∞; −7)∪(1,5; ∞). 1 9
2. 271+2x>( )2+x; 33(1+2x)>3−2(2+x), 3+6x>−4−2x; 8x>−7; x>−
7 . 8
Ответ: (−0,875; ∞). 3. 7cos (x−
3π )+5sin x+1=0; 2
−7sin x + 5sinx + 1=0;
π 1 , x=(−1)k 6 +πk, k∈Z. 2 π Ответ: (−1)k 6 +πk, k∈Z.
sin x=
4. а) D(f)= [−3,5; 5]; б) −2 < f(х) ≤ 1 при x∈ [−3,1; 0]∪[2,1; 3,5); в) функция возрастает на промежутке [−2; 1]; функция убывает на промежутках [−3,5; −2] и [1; 5]; г) f(x) = 0 при х = –2; д) max f(x)=f(1)=5,5; min f(x)=f(5)= –3. 5. f(x) =3x–5; F(x)=
3x 2 3( 4 )2 – 5x+C; −5⋅4+C=10; 24−20+C=10; C=6. 2 2
Ответ: F(x)=1,5x2–5x+6.
Вариант 22 5
7
1. a 6 b12 a Ответ:
1 a 12
−
3 4
b
−
1 − b 12
2 3
5 3 − 4
= a6
7
b 12
−
2 3
=a
10 −9 12
7 −8
1
b 12 = a 12 b
−
1 12
.
. 26
2. log5(4x+1)>–1; 1 log5 ( 4 x + 1 ) > log5 , 4 x + 1 > 0 ,2 , 4x>−0,8; x>−0,2. 5 4 x + 1 > 0; 4 x + 1 > 0;
Ответ: (– 0,2; ∞). 3. tgx–ctg(
π +x)+2=0; 2
π +πk, k∈Z. 4 3π 7π Отрезку [0; 2π] принадлежат x= (k=1) и x= (k=2). 4 4 3π 7π , . Ответ: 4 4
tgx + tgx + 2 = 0; tgx = –1. x=−
4. f(x)=2x2–x+ 1; f′(x) = 4x−1. 4x – 1=7; x=2; f(2)=7. Ответ: (2; 7). 5. f(x)=2x–x2. Найдем абциссы точек пересечения графика функции с осью абцисс: 2х–x2=0; x1=0 или x2=2. 2
S = ∫ 2x − x2 = x2 − 0
Ответ:
1 32 8 4 x =4 − = 3 0∫ 3 3
4 . 3
27
Вариант 23 1. a
−
9 2
Ответ:
1
b 12 : a 1 a4
−
19 4
1 − b 4
1
b3 = a
9 19 − + 2 4
1
⋅ b12
−
1 3
=a
19−18 4
1− 4
1
b 12 = a 4 b
−
1 4
.
.
2. 0,2 ≤ 5x+4 ≤ 125; 5−1 ≤ 5x+4 ≤ 53, 5 > 1, следовательно, –1 ≤x+4 ≤ 3; –5≤ x ≤ –1. Ответ: –5; −4; –3; –2; –1. 3. (sin x + cos x)2 –1=0, [0; 2π]; 1 + sin2x – 1 = 0; sin 2x =0,2х = πk; Отрезку [0,2π] принадлежат только корни: 0, π/2, π, 3π/2, 2π Ответ: 0;
π 3 ; π; π: 2π. 2 2
4.
5. f(x) = 4cos x+ 3, x=− f′(x)=–4sinx; k=f′(−
π ; 3
3 π π π ); k = –4sin (− )=4sin = 4⋅ =2 3 . 3 3 3 2
Ответ: 2 3 . Вариант 24 3
5
5
1. a 4 b 24 : a 12 b
−
1 8
3
= a4
−
5 12
5
⋅ b 24
+
1 8
1
1
= a3 b3 .
28
1
1
Ответ: a 3 b 3 . 2. log 1 (2x+3)>−3; 5
log 1 ( 2 x + 3 ) > log 1 53 , 2 x + 3 < 125, x < 61, −1,5<x −1,5; x > −1,5; 2 x + 3 > 0;
Ответ: (–1,5; 61). π ); 3 π 1 1 –sin x = ; sin x = – ; x=(–1)k+1 6 +πk, k∈Z. 2 2 π k+1 Ответ: (–1) 6 +πk, k∈Z.
3. sin (π + x) = cos (−
4. 1 3
f′(x)=x2–4; x2–4=0;х1=2, y1=–3 ; x2=–2, y2=7 1 3
1 . 3
1 3
Ответ: (2; –3 ), (–2; 7 ).
5. f(x)=х4+3x; F(x)=
x5 x2 +3 +C. 5 2
x5 x2 +3 +C. 5 2
Ответ:
Вариант 25
1.
2
2x − 1 >0; x −8
x∈(−
1 2
;
1 2
2( x −
1
)( x +
2 x −8
1
) 2 >0;
)∪(8; ∞). 29
Ответ: (−
1 2
;
1 2
)∪(8; ∞).
2. log0,5(2x)>2; 1 log 0 ,5 ( 2 x ) > log 0 ,5 , 4 2 x > 0;
1 2 x < , 4 x > 0;
1 1 x < , 8 0<x< . 8 x > 0; 1 Ответ: (0; ). 8
3. (cos x − 1)2=cos2x−1; cos2 x –2cos x + 1 = cos2 x – 1: 2 cos x = 2; cos x = 1; x=2πn, n∈Z. Ответ: 2πn, n∈Z. 4.
5. у=sin x, y=x+1, y=ex, y= x ; а) y=sin х; у′= cos x; cos x > 0 не на всей области определения; б) y=x+1; y′=1; 1>0 – на всей области определения (−∞; ∞); в) y=ex; y′=ex; ex>0 − на всей области определения (−∞; ∞); г) y= x ; y′=
1 2 x
;
1 2 x
>0 − на всей области определения (0; ∞);
Ответ: у=х+1; у=ex; y= x .
30
Вариант 26 11x 2 − x x( 11x − 1 ) ≤0; ≤0. 2+x 2+x x( 11x − 1 ) Пусть f(x)= ; f(x) определена на (–∞; –2)∪(–2; ∞); 2+x 1 f(x)=0 при x=0 и x= ; 11
1.
x∈(–∞; –2)∪[0; –
1 ]. 11
Ответ: (–∞; –2)∪[0; – 2.
1 ]. 11
1 log2(3x–2)=3; 2
log ( 3x − 2 ) = log 2 64 , log 2 ( 3x − 2 ) = 6, 2 2 3x − 2 > 0; x > 3 ; 3x − 2 = 64 , x=22. 2 x > 3 ; x +1=0; 2 x x π sin =−1, =− +2πk, k∈Z; x=−π+4πk, k∈Z. 2 2 2
3. sin
Ответ: −π+4πk, k∈Z. 4. а) D(f) =– [2,5; 6,5]; б) f(x) 0; 3x2 – 2x – 8 < 0; 31
3х2 – 2х – 8 = 0;
D 4 =1+24=25; x1=− ; x2=2; 4 3
Ответ: возрастает на [−
4 ; 2]. 3
Вариант 27 2
4−x ( x + 2 )( x − 2 ) >0; 0;
0<x 0; х(х – 7) > 0;
Ответ: (–∞; 0)∪(7; ∞). 2.
1 3−x 0 при x∈(–3; 0,7)∪(4,5; 6); f′(x) < 0 при x∈(0,7; 4,5); в) касательные параллельны оси абсцисс в точках x = 0,7 и x = 4,5; г) f(x)≤–2 при –3≤x0 на промежутках (–3; –1) и (2,5; 5,5), f′(x) < 0 на промежутке (–1; 2,5); 40
г) касательные параллельны оси абсцисс в точках x=–1 и x= 2,5; д) max f(x)=f(5,5)=5,5; min f(x)=f(2,5)=−3. 5. f(x) = 3(x2 – 2), g(x) = 3х(х2 – 2), q(x) = 3x2−6x+1; 3 2 F(x)=x −3x +1; 2 F′(x) = 3x – 6х. Т.к. F′(x)≠f(x), F′(x)≠g(x) и F′(x)≠q(x), то ни для одной из приведенных функций функция F(x) не является первообразной. Ответ: не является для данных функций. Вариант 36 1.
x 2 − 14 х − 15 x 2 − 14 х − 15 >0; 0; x > −3;
Ответ: 24997. 3. sin α 1 + cos α sin 2 α − 1 + cos 2 α – = =0. ( 1 − cos α ) sin α 1 − cos α sin α
4. а) D(f) = [–2,5; 6,5]; б) f(х) ≤ 0,5 при x∈[–1,5; 2,3]∪[4,7; 6,5]; в) касательные параллельны оси абсцисс в точках x=1; 3,5. г) промежуток возрастания – [1; 3,5]; промежутки убывания – [–2,5; 1] и [3,5; 6,5]; д) max f(x) = f(–2,5) = 4,5; min f(x)=f(1) = –2. 41
5. f(x)=x−2x3; F(x)= 3=
x2 x4 x2 x4 −2 +C; F(x)= − +C. 2 4 2 2
0 0 − +C; С=3. 2 2
Ответ:
x2 x4 − +3. 2 2
Вариант 37 1. y=ln
x+5 x+5 ; >0; 7x −1 7x −1
Ответ: (−∞; −5)∪(
1 ; ∞). 7
2. 8 · 2x−1−2x>48; 4 · 2x–2x>48; 2x >16; 2x >24; x > 4. Ответ: (4; ∞). 3. sin2 x – 6sin x = 0; sin x (sin x – 6) = 0; sin x = 0, ( 1 ) sin x − 6 = 0 ( 2 )
(2) – не имеет решений, т.к. |sin x| ≤1; (1): x=πk, k∈Z. Ответ: πk, k∈Z. 4. а) D(f)=[− 3,5; 5]; б) f(x)≤ 0,5 при x∈[0,5; 2,6] и x∈[3,8; 5]; в) точки экстремума функции: x=–1,5; 1,5; г) промежутки возрастания: [–3,5; –1,5] и [1,5; 3,5]; промежутки убывания: [–1,5; 1,5] и [3,5; 5]; д) max f(x)=f(–1,5)=5,5; min f(x)=f(5)=−3. 5. S=5t−0,5t2 (м); v(t)=S′(t); S′(t)=5−t, v(4)=S′(4)=5−4=1(м/с). Ответ: 1 м/с.
42
Вариант 38 1
1
1
1
1
1
1
1. 6 3 ⋅ 18 3 ⋅ 4 6 = 6 3 ⋅ 6 3 ⋅ 3 3 ⋅ 2 3 =6. Ответ: 6. 2. log0,1x>−1; log0 ,1 x > log0 ,110; x < 10 ( т.к. a = 0,1 < 1), 0<x 0; x > 0;
Ответ: (0; 10). 3. (1 + sin x)(l + cos x) = 1 + sin x + cos x, [0; 2π]; 1 + cos x + sin x + sin x cos x = 1 + sin x + cos x; sin x cos x = 0. sin x = 0 ,
Уравнение равносильно системе cos x = 0; x = πk ,k ∈ Z , x = π + πn ,n ∈ Z . 2
Из этих корней, отрезку [0; 2π] принадлежат только корни: 0; π;
π ; 2
3π ; 2π 2
4. а) D(f) = [–3; 6]; б) f(x) ≤ 0 при x∈[–3; 0]∪[2,5; 5,5]; в) касательные параллельны оси абсцисс в точках x=–1,5 и x=4; г) функция возрастает на промежутках [–3; 1,5] и [4; 6], функция убывает на промежутке [1,5; 4]; д) max f(x)=f(1,5)=3,5; min f(x) =f(–3) = –5. 5. S = 0,5t2 +3t+4 (м); v(t) = S′(t); S′(t) = t + 3, v(2)=S′(2) = 5 (м/с). Ответ: 5 м/с. Вариант 39 1.
( x + 11 )( 2 x − 5 ) ≤0. 3x
43
Пусть f(x)=
( x + 11 )( 2 x − 5 ) ; 3x
f(x) определена на (–∞, 0)∪(0; ∞), f(x)=0 при x=–11 и x=2,5.
Ответ: (−∞; −11]∪(0; 2,5]. 2. 10⋅5x−1+5x+1=7; 2 · 5x + 5 · 5х = 7; 7 ⋅5x=7; 5x = 50; x = 0. Ответ: 0. 3. 2cos (
π – x) = 2 ; 2
π 2 ; x=(−1)k 4 +πk, k∈Z. 2
2sin x= 2 ; sin x = π
Ответ: (−1)k 4 +πk, k∈Z. 4. a) D(f) = [–3,5; 5]; 6) f(x) ≤ 0 при x∈[–3; –0,4]∪[2,5; 5]; в) точки экстремума функции: х = –1,5 и х = 1 г) функция возрастает на промежутке [–1,5; 1] и убывает на промежутках [–3,5; –1,5] и [1; 5]; д) max f(x)=f(1)=4,5; min f(x) = f(5) = –3. π
5. f(x)=tg(x)−2sin x; x=− 4 ; f′(x)=
π
1
cos 2 x
−2cosx; f′(− 4 )=
1 2
cos ( −
π ) 4
=2− 2 .
Ответ: 2− 2 . Вариант 40 1
1
1
1
1
1
1. 10 4 ⋅ 40 4 ⋅ 5 2 = 10 2 ⋅ 2 2 ⋅ 5 2 =10. Ответ: 10.
44
1 lg 81–lgx>lg2; 2 9 lg 9 − lg x > lg 2, > 2, x < 4 ,5, 0<x 0; x > 0; x > 0;
2.
Ответ: (0; 4,5). 3. sin (–x) = cos π; –sin x= –1; sin x = l;.x= Ответ:
π + 2πk, k∈Z. 2
π + 2πk, k∈Z. 2
4.
5. f(x) = 3 + 7х – 4x2; f′(x) = 7 – 8x; k = f′(x) = –9; 7 – 8x = –9; x = 2; f(2) = 1. Ответ: (2; 1). Вариант 41 2
1. у = lg (4x + 11x); 4x2 + 11x > 0; 4x(x + 2,75) > 0;
45
Ответ: (−∞; −2,75)∪(0; ∞). 2. 0,01 < 102+x< 10000; 10−2 0 – функция возрастает на R;. б) у = –5х + 9; D(y)= R; у′ = –5; –5 < 0 – функция убывает на R; в) v = х2; D(у) =R; y′= 2x.
Функция убывает на (–∞; 0] и возрастает на [0; +∞). г) у = –х3 + х; D(y) = R; у′ = –3х2 + 1; –3(х –
1 3
)(x+
1 3
)=0.
46
Функция убывает только на (−∞; –
1 3
]∪[
1 3
; +∞).
Ответ: у = –5х + 9. Вариант 42 1.
x 2 + 10 x 0 методом интервалов. 5( x − 0 ,4 )
Ответ: (−10; 0)∪(0,4; ∞). 2. log2(2x+1)=log23+1; log2(2x+1)=log23+log22; log2(2x+1)=log26; 2x+1=6; x=2,5.; 2⋅2,5+1=6>0 Ответ: 2,5. 3. 2sin
x − 3 =0; 4
π 4π 3 x x = , =(−1)k 3 +πk, x=(−1)k 3 +4πk, k∈Z. 4 2 4 4π Ответ: x=(−1)k 3 +4πk, k∈Z.
sin
4. а) D(f) = [–4,5; 4,5]; б) f′(х) > 0 на промежутке (–1; 3), f′(x) < 0 на каждом из промежутков (–4,5; −1) и (3; 4,5); в) касательные параллельны оси абсцисс в точках x= –1 и x=3; г) f(x) ≥ 2 при х ∈ [–4,5; –3,5]∪{3}; д) max f(x) = f(−4,5) = 3,5; min f(x)=f (–1)=−4,5. 5. F(x)=x4–4x2+1; F′(x) = 4x3 – 8x. Т.к. F′(x)=q(x), то функция F(x) является первообразной для функции q(x). 47
Ответ: q(x). Вариант 43 1.
4 − 49 x 2 >0. x −5
Пусть f(x)=
4 − 49 x 2 . x −5
Функция f(x) определена на промежутке (–∞; 5)∪(5; ∞); f(x) = 0 при x = ±
2 . 7
Решим неравенство (х–
Ответ: (−∞; − 2. 7x−(
2 2 )(x + )(x – 5) < 0 методом интервалов. 7 7
2 2 )∪( ; 5). 7 7
1 1−x 1 6 ) =6; 7x− ⋅7x=6; ⋅7x=6; 7x=7; x=1. 7 7 7
Ответ: 1. 3. sin x + cos (2π + x) – cos (
π –x); 2
sin x + cos x–sin x =–1, cos x =–l; x = π + 2πk, k∈Z. Ответ: π + 2πk, k∈Z. 4. а) D(f)=[−4; 4,5]; б) f(x)≥1 при x∈[–3; 4,5]; в) f′(x) > 0 на промежутках (–4; –1)∪(3; 4,5), f′(x) < 0 на промежутке (–1; 3); г) касательные параллельны оси абсцисс в точках x = –1 и x=3. д) mаx f(x) =f(–1) =5,5; min f(x) =f(−4)= –3. 5. у = –3х3 + 6x2 – 5х; у′ = –9х2 + 12х – 5; – 9x2 + 12х – 5 < 0; 9x2 – 12x + 5 > 0; 9x2 – 12x + 5 = 0;
D = 36 – 45 = –9 < 0. 4
48
Значит, 9x2 – 12x + 5 > 0 или у′ < 0 при любых действительных значениях x. Ответ: убывает на (–∞; ∞). Вариант 44 1.
4 x 2 − 16 x + 7 0. Ответ: 0,508. 3. (sin2α – cos2a)(sin2a + cos2a) + 2cos2a = sin2a – cos2a + 2 cos2a = = sin2a + cos2a = 1; 1=1, что и требовалось доказать. 4. а) D(f) = [–2; 7]; б) f(x) ≤ 0,5 при x ∈ [–2; –0,3]∪[2; 5,5]; в) касательные параллельны оси абсцисс в точках x =1 и x =3,5; г) функция возрастает на каждом из промежутков [–2; 1] и [3,5; 7]; функция убывает на из промежутке [1; 3,5]; д) mах f(x) =f(7) = 4,5; min f(x) = f(3,5) = –2. 5. S=t3−3t+4; v(t)=S′(t); S′(t)=3t2−3, v(t)=S′(3)=3⋅32−3=24 (м/с). Ответ: 24 м/с.
49
Вариант 45 1. lg
32 − 8 x 32 − 8 x ; >0; x +1 x +1
(32–8х)(x+1)>0; 8(x−4)(x+1) 0; 1 − 11x
1.
-
3(х + 2)(х – 2)(11х – 1) < 0;
+ -2
1 11
1 x ∈ (− ∞;−2) ∪ ;2 . 11
+ 2
Ответ: (-∞; -2) ∪ (
1 ; 2). 11
71
1 2. 6
x +1
= 36 x −1 ;
1 6-(х+1) = 62(х-1), -х – 1 = 2х – 2, x = . 3 1 Ответ: . 3 π 3. sin x + sin (π − x ) − cos − x = −1; 2 x=−
sin x + sin x – sin x = -1; sin x = -1; Ответ: −
π
π 2
+ 2πk , k ∈ Z .
+ 2πk , k ∈ Z .
2
4.
5. f(x) = 2x + x3; F (x ) = 2 ⋅ Ответ: x 2 +
x2 x4 + + C. 2 4
x4 + C. 4
Вариант 69 5
1.
1
1
5
b4c4 + b4c4 5 4
b c 5 4
5 4
1
1
5
b c4 + b4c4 5 4
5 4
b c Ответ: 0,7
, b = 2, c = 5; 5
=
5
(
b 4 c 4 c −1 + b −1 5 4
b c
5 4
)= 1+1 = 1+1 = c
b
5
2
7 . 10
72
2. lg(3 – 2x) < 2; 3 − 2 x < 100 3 − 2 x > 0;
x > −48,5, -48,5 < x < 1,5. x < 1,5;
(
)
3. tg 2 x − 3tgx = 0, [0; 2π]; tgx tgx − 3 = 0; tg x = 0
или tgx = 3 ;
π
+ πk , k ∈ Z . 3 1) 0 ≤ πn ≤ 2π; 0 ≤ n ≤ 2; n = 0; 1; 2; x = 0 при n = 0; x = π при n = 1; x = 2π при n = 2. π 1 1 2) 0 ≤ + πk ≤ 2π ; − ≤ k ≤ 2 − ; k = 0; 1; 3 3 3 4 π x= при k = 0; x = π при k = 1. 3 3 4 π Ответ: 0; ; π; π ; 2π. 3 3
x = πn, n ∈ Z или x =
4.
5. f(x) = x2 + 8x + 16, x = 0, y = 0, x = -2. 0
x3 2 8 S = ∫ x + 8 x + 16 dx = + 4 x 2 + 16 x = − − + 16 − 32 = 18 . 3 3 3 −2 −2 2 Ответ: 18 . 3 0
(
2
)
73
Вариант 70 5
5
2 1 6 6 6 6 1. 27 5 ⋅ 2 5 ⋅ 2 = 3 5 ⋅ 2 5 = 6. Ответ: 6. 2. lg x + 0,5 lg 16 < lg 80 – lg 2; lg x + lg 4 < lg 40; 4 x < 40, x < 10, 0 < x < 10. x > 0; x > 0; Ответ: (0; 10). 3. sin(-x) = sin2π; -sin x = 0, sin x = 0, x = πk, k ∈ Z. Ответ: πk, k ∈ Z. 4.
5. f(x) = 3x2 – 5; F(x) = x3 – 5x + C; F(2) = 10; 23 – 5 ⋅ 2 + C = 10; C = 12. Ответ: х3 – 5х + 12. Вариант 71 1
1 4 1 1 1 4 2 2 1. 72 3 ⋅ 36 6 ÷ 2 3 = 36 3 ⋅ 2 3 ⋅ 36 6 ÷ 2 3 = 6 ⋅ 2−1 = 3
Ответ: 3 2. log6(5x – 2) > 3 log62 + 2; log6(5x – 2) > log68 + log636; log6(5x – 2) > log6288; 74
5 x − 2 > 288 , x > 58. 5 x − 2 > 0;
Ответ: (58; ∞). 2 π π π 3. sin − x = sin , cos x = , x = ± + 2πk , k ∈ Z . 4 2 4 2
Ответ: ±
π 4
+ 2πk , k ∈ Z .
4.
5. f(x) = 2x3 + x2 + 3; x 4 x3 F (x ) = + + 3x + C; 2 3 1 1 5 F (− 1) > 0 : − − 3 + C > 0, C > 2 . Например С=5 2 3 6 x 4 x3 Ответ: + + 3x + 5. 2 3 Вариант 72 1
log 2 6
= 2log 6 = 6. 1. 8 3 Ответ: 6. 1 2. ≤ 7 x − 3 < 49; 7 7-1 ≤ 7х-3 < 72. Т.к. 7 > 1, то –1 ≤ х – 3 < 2; 2 ≤ х < 5. Ответ: 2; 3; 4. 2
75
3. (sin x – cos x)2 – 1 = 0, [0; 2π]; sin2x – 2sin x cos x + cos2x – 1 = 0; 1 – sin2x – 1 = 0; sin2x = 0; 2x = πk; πk x= , k ∈ Z. 2 0≤
π
2
k ≤ 2π ; 0 ≤ k ≤ 4; k = 0; 1; 2; 3; 4;
Ответ: 0;
π 2
; π;
3 π ; 2π. 2
4.
5. f(x) = x5 – x2; F (x ) = Ответ:
x 6 x3 − + C. 6 3
x6 x3 − + C. 6 3
Вариант 73 1.
2 x2 + 5x − 3 < 0; x−3 (х – 3)(2х2 + 5х – 3) < 0; 2(х – 3)(х – 0,5)(х + 3) < 0;
-
+ -3
0,5
+ 3
Ответ: (-∞; -3) ∪ (0,5; 3). 76
2. log2(7x – 4) = 2 + log213; log2(7x – 4) = log252; 7 x − 4 = 52, x = 8. 7 x − 4 > 0; Ответ: 8. 3. sin x = -0,8, −
π
2
< x < 0.
Учитывая условие, cos x = 1 − sin 2 x = 1 − (− 0,8) = 0,6. 2
Ответ: 0,6. 4.
5. f(x) = x3 – 3x2 + 5, f’(x) = 3x2 – 6x; k = f’(x0) = 0: 3x02 – 6x0 = 0 при х0 = 0 и х0 = 2; f(0) = 5, f(2) = 1; Ответ: (0; 5), (2; 1). Вариант 74 1.
8x2 − 2 x − 1 1 1 < 0; х(8х2 – 2х – 1) < 0; 8 x x − x + < 0 , x 2 4
-
+ -0,25
0
+ 0,5
Ответ: (-∞; -0,25) ∪ (0; 0,5). 2. log23 – log2(2 – 3x) = 2 – log2(4 – 3x); 3 4 3(4 − 3x ) = 4(2 − 3x ), log = log 2 , 2 2 − 3x 4 − 3x x < 2 ; 2 − 3 x > 0. 3 77
12 − 9 x = 8 − 12 x, 1 x = −1 . x < 2 ; 3 3
3. 3tg 2 x − 3 = 0;
π π πk 3 , 2 x = + πk , k ∈ Z ; x = + , k ∈ Z. 3 6 12 2 π πk Ответ: x = + , k ∈ Z . 12 2 tg 2 x =
4.
5. f(x) = 3x4 – 1; x5 F ( x ) = 3 − x + C. 5 3 Ответ: F (x ) = x 5 − x + C. 5 Вариант 75 1.
(x − 11)(3x − 8) < 0; 3(x − 11) x − 2 2 (x − 6) > 0;
6− x
-
+ 2
2 3
3
6
+ 11
2 Ответ: 2 ;6 ∪ (11; ∞ ). 3
78
2. 2х+3 + 2х+1 – 7 ⋅ 2х = 48; 3⋅2х = 48 2х = 16 х=4 Ответ: 4. 3 π 3. cos x = − , < x < π . 5 2 2
4 3 Учитывая условие, имеем: sin x = 1 − cos x = 1 − − = . 5 5 Ответ: 0,8. 4. f(x) = 2 ln x; 2 f ' (x ) = , k = f’(x0); k = f’(2) = 1. x Ответ: 1. 5. f(x) = x2 – 6x + 10; 2
∫ (x 3
S=
2
−1
3
x3 − 6 x + 10 dx = − 3x 2 + 10 x = 3 −1
)
1 1 = (9 − 27 + 30 ) − − − 3 − 10 = 25 . 3 3 1 Ответ: 25 . 3
Вариант 76 1.
3x + 12 x 2 x+4
-
>0
3х(4х + 1)(х + 4) > 0;
+ -4
-0,25
+ 0
Ответ: (-4; -0,25) ∪ (0; ∞). 2. log3(12 – 5x) = 2; log3(12 – 5x) = log39; 12 − 5 x = 9, x = 0,6. 12 − 5 x > 0; Ответ: 0,6. 79
3.
1 1 cos 2 α sin 2 α + = + = 2 2 2 2 2 1 + tg α 1 + ctg α sin α + cos α sin α + cos 2 α
cos 2 α + sin 2 α = 1; sin 2 α + cos 2 α 1 = 1, что и следовало доказать. 4. а) D(f) = [-3; 5]; б) f(x) ≥ 1 при х ∈ [-2,2; 0,5] ∪ [4,7; 5]; в) функция возрастает на каждом из промежутков [-3; -1] и [3; 5], убывает на промежутке [-1; 3]; г) f’(x) = 0 при х = -1 и при х = 3; д) max f (x ) = f (− 1) = 3; min f (x ) = f (3) = −4. =
[-3;5 ]
[−3;5 ]
5. f(x) = 3x2 – 2x3 + 6; f’(x) = 6x – 6x2 = 6x(1 – x); f’(x) = 0 при х = 0 и при х = 1; f’(x)
-
+
-
0 1 min max Ответ: xmin = 0; xmax = 1. f (x)
Вариант 77 1.
(x + 5)(x − 6) ≤ 0; 6x − 1
-
+ -5
-
+ 6
1 6 1
Ответ: (− ∞; − 5] ∪ ;6 . 6 1 81
3x + 2
2. 243
= 27 x − 3 ;
35 ⋅ 3-4(3х+2) = 33(х+3), 35-12х+8 = 33х+9, 13 – 12х = 3х + 9, x = Ответ:
4 . 15
4 . 15
80
3. 2cos x = -1, [0; 2π]; π 1 2π cos x = − , x = ± π − + 2πk , k ∈ Z ; x = ± + 2πk , k ∈ Z . 2 3 3 1 2 2π 2π 1) 0 ≤ . + 2πk ≤ 2π ; − ≤ k ≤ ; k = 0. Тогда x1 = 3 3 3 3 4π 2π 1 4 2) 0 ≤ − + 2πk ≤ 2π ; ≤ k ≤ ; k = 1. Тогда x 2 = 3 3 3 3 2π 4π Ответ: ; . 3 3 4. а) D(f) = [-3,5; 4,5]; б) f(x) ≤ 2,5 при х ∈ [-2; 4,5]; в) функция возрастает на промежутке [1; 3], убывает на промежутках [-3,5; 1] и [3; 4,5]; г) f’(x) = 0 при х = 3; д) max f (x ) = f (− 3,5) = 4; min f (x ) = f (1) = −3. [−3,5; 4,5 ]
[−3,5; 4,5 ]
5. f(x) = 5 – 8x – x2; f’(x) = -8 – 2x = -2(x + 4); критическая точка х = -4. max f (x ) = f (−4 ) = 21. [ − 6 ; −3 ]
Ответ: 21. Вариант 78 1.
x 2 − 25 1 < 0; 6(x + 5)(x − 5) x + < 0; 6x + 1 6
-
+ -5
−
1 6
+ 5
1 Ответ: (− ∞;−5) ∪ − ;5 . 6 2. 16 ⋅ 82+3х = 1; 1 24 ⋅ 23(2+3х) = 1, 24+6+9х = 1, 10 + 9х = 0, x = −1 . 9 1 Ответ: − 1 . 9
81
π 3. cos(3π + x ) − sin − x = 2 ; 2 − cos x − cos x = 2 , cos x = −
π 2 , x = ± π − + 2πk , k ∈ Z ; 2 4
3π + 2πk , k ∈ Z . 4 D(f) = [-3; 5,5]; 1 ≤ f(x) ≤ 2,5 при x ∈ {-3} ∪ [-1; -0,2] ∪ [2,6; 3]; промежуток возрастания – [-2; 1,5], промежутки убывания – [-3; -2] и [1,5; 5,5]; f’(x) = 0 при х = -2 и при х = 1,5; max f (x ) = f (1,5) = 4,5; min f (x ) = f (5,5) = −1.
Ответ: ± 4. а) б) в) г) д)
[− 3;5,5 ]
[− 3;5,5]
5. у = х3 + 3х2 – 9х; y’ = 3x2 + 6x – 9; 3x2 + 6x – 9 > 0 | : 3; x2 + 2x – 3 > 0; (x – 1)(x + 3) > 0.
+
-
+
-3
1
Ответ: возрастает на (-∞; -3] и [1; ∞). Вариант 79 1.
x 2 − 14 x + 48 >0 x+7
-
(x – 6)(x – 8)(x + 7) > 0;
+ -7
6
+ 8
Ответ: (-7; 6) ∪ (8; ∞). 2. log3(4 – 2x) – log32 = 2; log3(2 – x) = log39; 2 − x = 9; x = -7. x < 2 Ответ: -7. 3. sin2x – cos2x – 1, [0; 2π]; 1 – cos2x – cos x = 1; cos2x + cos x = 0; cos x(cos x + 1) = 0; cos x = 0 или cos x = -1; 82
x=
π
π 3
; π ; π. 2 2 D(f) = [-3; 6]; f(x) ≥ 1 при х ∈ [-2,5; 0,7] ∪ [4,5; 6]; промежутки возрастания – [-3; -1] и [2,5; 6], промежутки убывания – [-1; 2,5]; касательные, параллельные оси абсцисс, касаются графика в точках х = -1 и х = 2,5; max f (x ) = f (6) = 4; min f (x ) = f (2,5) = −2,5.
Ответ: 4. а) б) в) г) д)
или x = π + 2πk, k ∈ Z;
+ πn, n ∈ Z
2
[ −3; 6 ]
[ −3; 6 ]
5. S = 12t – 3r2; v(t) = S’(t) = 12 – 6t; v = 0 при t = 2c. Ответ: 2с. Вариант 80 1. y = lg
3x + 1 ; (3х + 1)(х – 4) > 0; x−4
+
−
+
1 3
4
1 Ответ: − ∞;− ∪ (4; ∞ ). 3 2. 103х+1 > 0,001; 1 103х+1 > 10-3. Т.к. а = 10 > 1, то 3х + 1 > -3; x > −1 . 3 1 Ответ: − 1 ; ∞ . 3 3. 3tg2x – 1 = 0; 3 π tgx = ± , x = ± + πk , k ∈ Z . 3 6
Отрезку [0; 2π] принадлежат x = Ответ:
π 5π 7π 11π 6
;
6
;
6
;
6
π 6
,x =
11π 5π 7π и x= , x= . 6 6 6
.
83
4. а) D(f) = [-3; 5,5]; б) f(x) ≥ 1 при х ∈ [-2,7; –0,3] ∪ [4; 5,5]; в) промежутки возрастания – [-3; -1,5] и [2,5; 5,5], промежуток убывания – [-1,5; 2,5]; г) касательные, параллельные оси абсцисс, касаются графика в точках х = -1,5 и х = 2,5; д) max f (x ) = f (5,5) = 5,5; min f (x ) = f (2,5) = −3. [ −3; 5, 5 ]
[ −3;5 , 5 ]
2
5. S = 1 + 4t – t ; Ответ: 2 с.
v(t) = S’(t) = 4 – 2t;
v(t) = 0 при t = 2 c.
Вариант 81 4
4
3 3 1 3 −3 3 1 4 1. 27 2 ⋅ = 3 2 ⋅ 3 2 = 1. 9
Ответ: 1. 2. log0,5(2x + 1) > -2; log0,5(2x + 1) > log0,54; 2 x + 1 < 4 ( т.к. a = 0,5 < 1), 2 x + 1 > 0; x < 1,5, x > −0,5; Ответ: (-0,5; 1,5). 1 + tg 2α 1 + tg 2α − tg 2α − tg 2αctg 2α 0 2 − = tg 3. = = 0. α 2 2 1 + ctg α 1 + ctg α 1 + ctg 2α 1 + tg 2α = tg 2α ; 1 + ctg 2α D(f) = [-2,5; 6]; f(x) ≥ 1 при х ∈ [-2,5; -1,4] ∪ [1; 5]; промежуток возрастания – [0; 2], промежутки убывания – [-2,5; 0] и [2; 6]; прямые, параллельные оси абсцисс, касаются графика в точках х = 0 и х = 2;
Значит, 4. а) б) в) г)
д) max f (x ) = f ( −2,5 ); min f (x ) = f ( 0 ) − 1,5. 5. f(x) = 2x2 – 5x + 1; k = f’(x0) = 4x0 – 5; k = 3 при 4x0 – 5 = 3; x0 = 2, f(x0) = -1. Ответ: (2; -1).
84
Вариант 82 1. 7 − 2 log
7
5
Ответ:
(
= 7 log 7 5
)
−2
= 5− 2 =
1 . 25
1 . 25
1 < 2 x −1 ≤ 16; 8 2-3 < 2x-1 ≤ 24, -2 < x ≤ 5. Ответ: -1; 0; 1; 2; 3; 4; 5. 3. 2sin x – sin2x = cos2x; 1 k π 2sin x = 1, sin x = , x = (− 1) + πk , k ∈ Z . 2 6
2.
Ответ: (− 1)
π
+ πk , k ∈ Z . 6 D(f) = [-2,5; 5]; f(x) ≥ 3 при х ∈ [-2,5; -0,5] ∪ {3,5}; промежутки возрастания – [1,5; 3,5], убывания – [-2,5; 1,5] и [3,5; 5]; f’(x) = 0 при х = 1,5; max f (x ) = f (−2,5) = 4,5; min f (x ) = f (5) = −3. k
4. а) б) в) г) д)
[ − 2 , 5; 5 ]
[ − 2 , 5; 5 ]
5. f(x) = 1 – 5x + 3x2; k = f’(x0) = -5 + 6x0; k = 1 при 6х0 – 5 = 1, х0 = 1, f(x0) = -1. Ответ: (1; -1). Вариант 83 1.
2a 2 3
−
1 3 −
1 3
=
2a −
1 3
−
1 3
=
2 2 . При а = 4 = 2. a−3 4−3
a − 3a a (a − 3) Ответ: 2. 2. log3(5x – 6) < log32 + 3; log3(5x – 6) < log354; 5 x − 6 < 54, ; x < 12, 1,2 < x < 12. 5 x − 6 > 0; x > 1,2; Ответ: (1,2; 12).
85
π 3. sin (π + x ) = cos − ; 3 1 − sin x = ; 2 1 k +1 π sin x = − , x = (− 1) + πk , k ∈ Z . 6 2
Ответ: (− 1)
k +1
4. а) б) в) г) д)
π
+ πk , k ∈ Z . 6 D(f) = [-3; 5,5]; f(x) < -1 при х ∈ (-3; -1) ∪ (2,5; 5,5]; промежутки возрастания – [-3; 1], убывания – [1; 5,5]; f’(x) = 0 при х = -1; max f (x ) = 3,5; min f (x ) = −5,5. [− 3;5,5 ]
[− 3;5,5]
5. f(x) = x2ln x; f ' (x ) = 2 x ln x + x 2 ⋅
Ответ: x(2 ln x + 1). .
1 = x(2 ln x + 1). x
Вариант 84 1.
(x − 2)(x − 9) ≥ 0; (4 x − 5) -
+ 1,25
2
+ 9
Ответ: (1,25; 2] ∪ [9; ∞). 2. 2 ⋅ 5х+2 – 10 ⋅ 5х = 8; 50 ⋅ 5х – 10 ⋅ 5х = 8, 5х = 5-1, х = -1 Ответ: -1. 3. 2 cos (π + 2x) = 1; π 1 -2 cos 2x = 1; cos 2 x = − ; 2 x = ± π − + 2πk , k ∈ Z ; 2 3 x=±
π
3
+ πk , k ∈ Z .
Ответ: ±
π 3
+ πk , k ∈ Z .
86
4. а) б) в) г)
D(f) = [-3; 6]; f(x) ≤ -1 при х ∈ {-1,5} ∪ [3,5; 6]; f’(x) = 0 при х = -1,5; промежутки возрастания – [-1,5; 1], убывания – [-3; -1,5] и [1; 6]; д) max f (x ) = 4,5; min f (x ) = −3. [− 3;6 ]
[− 3;6 ]
2
5. S = 0,5t – 3t + 4; v(t) = S’(t) = t – 3, v(t) = 0 при t = 3 c. Ответ: 3 с. Вариант 85 1.
9 x2 − 1 > 0 ; (3х + 1)(3х – 1)(х – 6) > 0; x−6
-
+ −
-
1 3
+ 6
1 3
1 1 Ответ: − ; ∪ (6; ∞ ). 3 3 1 5 2. 251−3 x = ; 52(1-3х) = 5-3, 2 – 6х = -3, x = . 125 6 5 Ответ: . 6 π 3. sin (π − x ) − cos + x = 3 ; 2 x = (− 1)
k
π
π
+ πk , k ∈ Z . 3 D(f) = [-3,5; 6]; f(x) ≥ 3,5 при х ∈ {-0,5} ∪ [5,8; 6]; f’(x) = 0 при х = -0,5 и при х = 3,5; промежутки возрастания – [-3,5; -0,5] и [3,5; 6], убывания – [-0,5; 3,5]; max f (x ) = 4,5; min f (x ) = −3,5. k
д)
3 ; 2
+ πk , k ∈ Z .
3
Ответ: (− 1) 4. а) б) в) г)
sin x + sin x = 3 , sin x =
[ − 3, 5; 6 ]
[− 3,5; 6 ]
87
5. f(x) = 4 – x2; F (x ) = 4 x − F (− 3) = 10 : 4 ⋅ (− 3) −
Ответ: 4 x −
x3 + C; 3
(− 3)3 + C = 10, 3
C = 13;
x3 + 13. 3
Вариант 86 7
1.
1
a3 + a3 a
4 3
7
, а = 2;
1
a3 + a3 a
4 3
4
=
(
a 3 a + a −1 a
4 3
) = a + 1 . При а = 2 a + 1 = 2 + 1 = 2 1 . a
a
2
2
1 Ответ: 2 . 2 2. log7(2x – 1) < 2; log7(2x – 1) < log749; 2 x − 1 < 49 , ; x < 25, 0,5 < x < 25. x > 0,5; 2 x − 1 > 0; Ответ: (0,5; 25).
3. cos(π + x ) = sin
π
; 2 -cos x = 1; cos x = -1, x = π + 2πk, k ∈ Z. Ответ: π + 2πk, k ∈ Z.
4.
88
5. S = 0,5t2 + 3t + 2; v(t) = S’(t) = t + 3; v(t) = 15 при t = 12 с. Ответ: 12 с. Вариант 87 1. 160,5 log 10 = 4log 10 = 10. Ответ: 10. 2. 0,5 < 21-x ≤ 32; 2-1 < 21-x ≤ 25.;–1 < 1 – х ≤ 5; -4 ≤ х < 2. Ответ: -4; -3; -2; -1; 0; 1. 4
4
3. sin x – sin2x = cos2x;
sin x = 1, x =
π
π 2
+ 2πk , k ∈ Z .
+ 2πk , k ∈ Z . 2 4. f(x) = 2x3 – 3x2 – 4; f’(x) = 6x2 – 6x; f’(-1) = 12; k = 12. Ответ: 12. 5. у = -х3 + 9х2 + 21х; y’ = -3x2 + 18x + 21; -3x2 + 18x + 21 < 0; x2 – 6x – 7 > 0. (х – 7)(х + 1) > 0.
Ответ:
+
-
+
-1
7
Ответ: убывает на (-∞; -1] и [7; ∞). Вариант 88 1. y = lg
3x + 1 > 0; 1 − 3x
3x + 1 ; 1 − 3x
+
−
1 3
(3х + 1)(3х – 1) < 0;
+ 1 3
1 1 Ответ: − ; . 3 3
89
2− x
1 2. < 125 x +1 ; 5-2(2-х) < 53(х+1), т.к. –4 + 2х < 3х + 3, х > -7. 25 Ответ: (-7; ∞). 3. 1 cos 2 α 1 1 + ctg 2α + =1+ + = 2 cos α sin 2 α cos 2 α sin 2 α cos 2 α + cos 4 α + sin 2 α cos 2 α sin 2 α + cos 2 α + sin 2 α = = = sin 2 α cos 2 α sin 2 α cos 2 α 1 = ; что и требовалось доказать. 2 sin α cos 2 α 4.
(
)
5. f(x) = 5x + 7; 2 5x 2 5(− 2 ) F (x ) = + 7 x + C ; F (− 2) = 4 : + 7 ⋅ (− 2) + C = 4; C = 8; 2 2 Ответ: 2,5x2 + 7x + 8. Вариант 89 1.
9 5
4
4
9a 5
9a 5
a + 2a
1 − 5
=
4 5
(
a a + 2a −1
)
=
9a . a +2 2
9a 9⋅5 5 При а = 5 2 = 2 = . a +2 5 +2 3 2 Ответ: 1 . 3
90
2. lg(0,5x) < -2; lg(0,5x) < lg0,01; 0,5 x < 0,01, x < 0,02, x > 0; x > 0; Ответ: (0; 0,02). 2
4 π 3 4 , < x < π ; cos x = − 1 − sin 2 x = − 1 − = − . 5 2 5 5 Ответ: –0,6
3. sin x = 4.
5. f(x) = x – x2; x 2 x3 F (x ) = − + C; 2 3 F(2 ) = 10;
Ответ:
2 2 23 2 2 − + C = 10; C = 10 − 2 + 2 = 10 , 2 3 3 3
x 2 x3 2 − + 10 . 2 3 3
Вариант 90 x +1 ; 2x − 1 (х + 1)(2х – 1) > 0;
1. y = lg
+
-1
+ 0,5
Ответ: (-∞; -1) ∪ (0,5; ∞). 91
2. 322х+3 < 0,25; 25(2x+3) < 2-2. 10х + 15 < -2, х < -1,7. Ответ: (-∞; -1,7). 3. 4sin2x = 3; 3 3 sin 2 x = ; sin x = ± ; 4 2
4. а) б) в) г) д)
π
+ πk , k ∈ Z . 3 D(f) = [-3; 6]; -1,5 ≤ f(x) ≤ 4 при х ∈ [-2,6; 0,5] ∪ [4; 6]; f’(x) = 0 при х = -1 и при х = 2; промежуток возрастания – [-3; 2], убывания – [2; 6]; max f (x ) = f (2 ) = 5,5; min f (x ) = f (− 3) = −2,5.
x=±
[−3; 6 ]
[−3;6 ]
2
2
5. f(x) = 6(x – 1), g(x) = 6x – 6x + 1 и q(x) = 6x(x – 1); F(x) = 2x3 – 3x2 + 1; F’(x) = 6x2 – 6x. Т.к. F’(x) = q(x), то функция F(x) = 2x3 – 3x2 + 1 является Первообразной функции q(x) = 6x(x – 1). Ответ: q(x). Вариант 91 1
log 3 4
1
log 3 4
; 32 = 3log 2 = 2. 1. 3 2 Ответ: 2. 1 2. < 33+ x < 9; 3 3-1 < 33+x < 32. –1 < 3 + x < 2, -4 < x < -1. Ответ: -3; -2. 1 3. cos x + cos 2 x = − sin 2 x; 2 1 1 π cos x = − 1, cos x = − , x = ± π − + 2πk , k ∈ Z ; 2 2 3 3
2π + 2πk , k ∈ Z . 3 2π Ответ: ± + 2πk , k ∈ Z . 3 4. а) D(f) = [-2,5; 6]; б) -1 ≤ f(x) < 2 при х ∈ (-2; -0,5] ∪ [2,8; 3,8);
x=±
92
в) f’(x) = 0 при х = 1,5 и х = 4,5; г) промежуток возрастания – [1,5; 6], убывания – [-2,5; 1,5]; д) max f (x ) = f (6 ) = 5,5; min f (x ) = f (1,5) = −2,5. [− 2 , 5 ; 6 ]
[ − 2 , 5; 6 ]
5. f(x) = 1 – 5x – x2; f’(x) = -5 – 2x; k = f’(x0) = 9; -5 – 2x0 = 9, x0 = -7, f(x0) = -13. Ответ: (-7; -13). Вариант 92 1.
x(4 x − 11) < 0; x−7
-
+ 0
2,75
+ 7
Ответ: (-∞; 0) ∪ (2,75; 7). 2. 165-3х = 0,1255х-6; 2 24(5-3х) = 2-3(5х-6), 20 – 12х = -15х + 18, x = − . 3 2 Ответ: − . 3
3. sin 2 α + ctg 2α + cos 2 α = 1 + ctg 2α =
1 , что и требовалось sin 2 α
доказать 4. а) D(f) = [-3; 6]; б) f(x) ≥ 4 при х ∈ {-1,5} ∪ [5; 6]; в) f’(x) > 0 на промежутках (-3; -1,5) и (2,5; 6), f’(x) < 0 на промежутке (-1,5; 2,5); г) х = 2,5, х = –1,5 д) max f (x ) = f (6) = 5; min f (x ) = f (2,5) = −3. [− 3; 6 ]
[− 3;6 ]
5. f(x) = x3ln x;
( )
f ' (x ) = x 3 ' ln x + x3 (ln x )' = 3x 2 ln x + x 3 ⋅
1 = 3x 2 ln x + x 2 ; x
f’(4) = 3 ⋅ 42ln4 + 42 = 16(3ln4 + 1). Ответ: 16(3ln4 + 1).
93
Вариант 93 1.
x 2 − 19 x + 84 > 0; 2(х – 7)(х – 12)(х – 5) > 0; 2(x − 5)
-
+
-
5
7
+ 12
х ∈ (5; 7) ∪ (12; ∞). Ответ: (5; 7) ∪ (12; ∞). 1 2. lg(5 x + 2 ) = lg 36 + lg 2; 2 lg(5x + 2) = lg(6 ⋅ 2); 5 x + 2 = 12, х = 2. 5 x + 2 > 0; Ответ: 2. 1 1 − = 3. 1 + tg 2α + sin 2 α sin 2 α cos 2 α 1 1 1 = + − = 0. ,что и требовалось доказать cos 2 α sin 2 α sin 2 α cos 2 α 4. а) D(f) = [-3,5; 5]; б) f(x) ≤ -2 при х = -3,5; в) прямые, параллельные оси абсцисс, касаются графика в точках (-1,5; 3), (0; –0,5) и (1; -1,5); г) промежутки возрастания – [-3,5; -1,5] и [1; 5], убывания – [-1,5; 1]; д) max f (x ) = f (−1,5) = f (5) = 3; min f (x ) = f (−3,5) = −2. [ − 3 , 5; 5 ]
[ − 3, 5; 5 ] 2
5. f(x) = -x + 5x. f(x) = 0 при х = 0 и х = 5. S=
0
5
x3 5x 2 125 125 125 5 =− − x + 5 x dx = − + + = = 20 . 6 2 3 2 6 3 0
∫( 5
2
)
5 Ответ: 20 . 6
94
Вариант 94 1. y = lg
4 − 5x ; x−3
4 − 5x > 0; x−3
+
(5х – 4)(х – 3) < 0; 5(х – 0,8)(х – 3) < 0;
0,8
+ 3
Ответ: (0,8; 3). 1 2. 3 x −3 + ⋅ 3 x > 10; 3 1 x 1 x 10 x ⋅ 3 + ⋅ 3 > 10, ⋅ 3 > 10 , x > 3 27 3 27 Ответ: (3; ∞). 3. 2sin2x – 1 = 0 1 – cos2x – 1 = 0, cos2x = 0, 2 x =
г) д)
+
πk
2
+ πk , x =
π 4
+
πk 2
, k ∈ Z.
, k ∈ Z. 4 2 D(f) = [-2; 6]; f(x) > 0 при х ∈ [-2; 4); f’(x) > 0 на промежутке (-1; 1), f’(x) < 0 на промежутках (-2; -1), (1; 2,5) и (2,5; 6); х = -1, х = 1 max f (x ) = 5,5; min f (x ) = −1,5.
Ответ: 4. а) б) в)
π
π
[− 2 ; 6 ]
[− 2 ; 6 ]
5. y’ = 2x – x2. x3 y = x 2 − + C. 3 Ответ: y = x 2 −
x3 + C. 3
95
Вариант 95 2
1. y = lg(x – 8x). x2 – 8x > 0;
+
0
+ 8
Ответ: (-∞; 0) ∪ (8; ∞). 2. 6 ≤ 61-х < 216; 6 ≤ 61-х < 63. Т.к. а = 6 > 1, то 1 ≤ 1 – х < 3, -2 < х ≤ 0. Ответ: -1; 0. 3. sin2x – 0,25 = 0 1 – cos2x = 0,5; 1 π π cos 2 x = , 2 x = ± + 2πk , x = ± + πk , k ∈ Z . 2 3 6
4. а) б) в) г) д)
π
+ πk , k ∈ Z . 6 D(f) = [-3,5; 6]; f(x) < 0 при х ∈ [-3,5; -3) ∪ (1,5; 2,5); f’(x) > 0 на промежутках (-3,5; -1,5), (2; 4) и (4; 6), f’(x) < 0 на промежутке (-1,5; 2); х = -1,5; х = 2; max f (x ) = 5,5; min f (x ) = −2.
Ответ: ±
[ − 3, 5; 6 ]
[ − 3, 5 ; 6 ]
5. 1) 2) 3) 4)
у = 6х; D(y) = R; y’ = 6; 6 > 0; у возрастает; у = -3х + 1; D(y) = R; y’ = -3; -3 < 0; у убывает; у = -3х2; D(y) = R; y’ = -6x; y’ = 0, если х = 0; у = х3 + х; D(y) = R; y’ = 3x2 + 1; y’ > 0 на R, значит, на всей области определения возрастает. Ответ: у = 6х и у = х3 + х. Вариант 96
1.
7x + x2 0,5; х = 0,75. 16 32 2 x − 1 > 0; 2 2
Ответ: 0,75. 3. sin 2 α + tg 2α + cos 2 α = 1 + tg 2α =
1 ; cos 2 α
, что и требовалось доказать. 4.
5. При t=2 и t=4 S(t)=0; Ответ: 0(м).
97