TRENDS IN MATHEMATICAL PSYCHOLOGY
ADVANCES IN PSYCHOLOGY 20 Editors
G . E. STELMACH
P. A . VROON
NORTH-HOLLAND AMS...
161 downloads
2293 Views
20MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
TRENDS IN MATHEMATICAL PSYCHOLOGY
ADVANCES IN PSYCHOLOGY 20 Editors
G . E. STELMACH
P. A . VROON
NORTH-HOLLAND AMSTERDAM ' N E W YORK'OXFOKD
TRENDS IN MATHEMATICAL PSYCHOLOGY
Edited by
E. DEGREEF and
J. VAN BUGGENHAUT Centrefor Statistics and Operational Research Brussels, Belgium
1984
NORTH-HOLLAND AMSTERDAM. NEW YORK . OXFORD
0 Elsevier Science
Publishers B.V.. 1984
All rights reserved. No part of this publication may be reproduced. stored in a retrieval system. or transmitted. in any form o r by any means. electronic. mechanical. photocopying. recording o r otherwise. without the prior permissionof thecopyright owner.
ISBN: 0 4 4 87512 3
Publishers: ELSEVIER SCIENCE PUBLISHERS B . V . P.O. Box 1991 1ocN) B Z Amsterdam The Netherlands
Sole disiribur0r.rfor the U.S.A. und (briadu. ELSEVIER SCIENCE PUBLISHING COMPANY. INC. 52 Vanderbilt Avenue New York. N.Y. 1OUI7 U.S.A.
Library of Comgmm Catmlogl~g11 PmbUeathm Datm
MBin.entry under title: Trends in mathematical psychology. (Advances in psychology ; 2 0 ) Papers presented at the 14th European Mathematical Ssychology Group Meeting, held in Brussels, Sept. 12-14,
1983. Includes indexes. Psychometrics--Congresses. I. Degreef, E., 1953TI. Buggenhaut, J. van, 1937111. European Mathematical Psychology Group. IV. European Mathematicd' Psychology Group. Meeting (14th : 1983 : Brussels, Belgium) V. Series: Advances in psychology ( h t e r d a m , Netherlands) 4 20.
.
BF39.T74 1984 150' .28'7 ISBN 0-444-87512-3 ( U . S . )
84-6032
PRINTED IN THE NETHERLANDS
V
PREFACE
T h i s volume g a t h e r s most o f t h e papers p r e s e n t e d a t t h e 1 4 t h Eurooean Mathem a t i c a l Psychology Grouo Meetinq. Sentember 12 t o t e i t Brussel.
The m e e t i n g took p l a c e i n B r u s s e l s f r o m
September 14, 1983 and was h o s t e d by t h e V r i j e U n i v e r s i -
F i n a n c i a l s u p n o r t was a l s o p r o v i d e d by; t h e p e l q i a n " N a t i o -
n a a l Fonds voor wetenschanpeli j k Dnderzoek", t h e B e l g i a n " t c i n i s t e r i e van N a t i o n a l e Opvoeding", t h e E e l F i a n " C u l t u r e l e B e t r e k k i n g e n " and t h e " N a t i o n a l e Bank van B e l g i e " . The i d e a o f t h e Groun i s t o b r i n g t o g e t h e r once a y e a r , neoDle i n Europe w o r k i n g i n t h e f i e l d o f V a t h e m a t i c a l Psychology,
Taken i n t o a c c o u n t t h e
growing importance a t t a c h e d t o mathematical models i n human s c i e n c e s , t h e exaeriences a c q u i r e d i n Drevious meetings and t h e presence, besides o t h e r we1 1-known p a r t i c i p a n t s , o f f o u r i n v i t e d l e c t u r e r s , namely S. Crossberg (Boston U n i v e r s i t y ) , F.S. and V.F.
Venda
-
V.Y.
Roberts (Rutoers, S t a t e U n i v e r s i t y o f New J e r s e y )
K r y l o v (Floscow, USSR Academy o f Sciences), gave us
t h e i d e a t o make a s e l e c t i o n o f t h e c o n t r i b u t i o n s and t o g a t h e r them i n a book. I n o r d e r t o s t r u c t u r e t h e whole, we t o o k t h e l i b e r t y t o groun t h e papers i n t o t h r e e p a r t s , knowing t h a t t h e c l a s s i f i c a t i o n can be discussed; o f t h e papers, indeed, can f i n d a p l a c e i n more than one p a r t .
some
So y o u w i l l
find: Part I
: P e r c e p t i o n , l e a r n i n g and memory
P a r t I 1 : Order and measurement P a r t 111: Data a n a l y s i s . ble hope t h a t t h e s t u d i e s c o l l e c t e d here, f a i r l y r e o r e s e n t t h e d i f f e r e n t p e r s p e c t i v e s and t h a t t h e volume as a whole w i l l be a dynamic r e s o u r c e f o r those who want t o keeD a b r e a s t o f f l a t h e m a t i c a l Psychology i n g e n e r a l and t h e Eurooean one i n p a r t i c u l a r . We f i n a l l y w i s h t o thank F r a n c i s Gheys f o r t h e e x c e l l e n t t y p i n g o f t h e manuscript.
I t was a l o t o f work, b u t we e n j o y e d i t .
The e d i t o r s B r u s s e l s , February 1984
This Page Intentionally Left Blank
Vii
CONTENTS
v
Preface P a r t i cioants
xi
PART I: PERCEPTION, LFARNINI; AND MEMORY
1
Tree r e n r e s e n t a t i o n s o f a s s o c i a t i v e s t r u c t u r e s i n semantic and e n i s o d i c memory r e s e a r c h 11. b b d i , J.-P.
FivLRhUtrny,
Y.
Luong
3
Task-denendent r e p r e s e n t a t i o n o f c a t e g o r i e s and memory-ouided inference duri nq c lassi f ication
H. R U ~ ~ W L . ~ti.-(;. ,
&?hAeet
33
O u t l i n e o f a t h e o r y o f b r i g h t n e s s , c o l o r , and f o r m n e r c e n t i o n
s.
h044bUg
59
A t t e n t i on i n d e t e c t i o n t h e o r v E.C. b!icbo
a7
I m n o s s i b l e o b j e c t s and i n c o n s i s t e n t i n t e r p r e t a t i o n s
E. TLtoianne
105
I n s e a r c h i n g o f general r e g u l a r i t i e s o f a d a p t a t i o n dynamics: on t h e t r a n s f o r m a t i o n l e a r n i n g t h e o r y V.F.
Venda
121
A D r o h a b i l i s t i c choice model adanted f o r t h e a n g l e D e r c e n t i o n experiment
N.P. VenheL5.t
159
PART I 1 : ORDER AND MEASUREPIEKT
175
About t h e a s y m t r i e s o f s i m i l a r i t y judgments: an o r d i n a l n o i n t o f view
J.-P. Rah.thaePrnu
177
The a x i o m a t i z a t i o n o f a d d i t i v e d i f f e r e n c e models for p r e f e r e n c e judgments
M.A. Cnoon
193
Contents
Viii
Generalizations o f i n t e r v a l orders
1.- 7 .
209
poiqnon
Reseaux s o c i a u x g e n e r a l i s e s : en combinant graphes e t hyperoranher C.
2 19
FLnment
On conceots o f t h e dimension o f a r e l a t i c n and a g e n e r a l i z e d r e copnition e x p c r i m n t
227
K . IJe?rh4t I s o t o n i c r e g r e s s i o n a n a l y s i s and a d d i t i v i t y
239
‘Inc Patiold
7.p.
T e s t i n g Fechnerian s c a l a b i l i t y b v Faximum l i k e l i h o o d e s t i m a t i o n
of o r d e r e d b i n o m i a l narameters
25 5
?. “ n t ~ 6 4 e f d
Prnbahi l i s t i c c o n s i s t e n c y , homoaeneous fami l i e s o f r e 1 a t i o n s and
1i n e a r 1-re1 a t i ons 271
B. V o n j m d c t A o p l i c a t i o n s o f t h e t h e o r v o f meaninafulness t o o r d e r and matching e x o e r i men t s
283
F.S. Robem2 A new d e r i v a t i o n o f t h e Rasch model
E . E . Ra.ikn~i, P.C.W.
Jnmen
293
A d e f i n i t i o n o f p a r t i a l i n t e r v a l orders
? I . ?oubeno, Ph. VLncke
309
Causal l i n e a r s t o c h a s t i c deDendencies: t h e f o r m a l t h e o r y
317
?. Sfelreh
F a c t o r i z a t i o n and a d d i t i v e decomposition o f a weak o r d e r
”.
347
Suck
PADT
363
111: DATA A N A L Y S I S
The oroblem o f r e p r e s e n t a t i o n based u m n two c r i t e r i a
365
G. De Ueut, hl. G ~ 4 n e ~X. , HubaLLt Tree r e p r e s e n t a t i o n s o f r e c t a n g u t a r p r o x i m i t y m a t r i c e s
G, Oe S o e t e , W.S. DCa.tbo, C.Pl.
FUMLU,
J.D. CmoU
377
ifleak and s t r o n g models i n o r d e r t o d e t e c t and measure o o v e r t y ?.
Picken
393
Contents
ix
Am1 ic a t i o n s o f a Bayes an Poisson model f o r misreadings M.G.f/.
Jan6en
405
The polychotomous Rasch model and d i c h o t o m i z a t i o n o f graded resnonses P.G.P!.
.TanAeen, E.E. Qobkam
413
Comnonent a n a l y s i s o f t r a n s i t i o n n r o b a b i l i t i e s and i t s a n o l i c a t i o n to prisoner's d i l e m a
K. R a i n i o
433
An a n p l i c a t i o n o f mu1 t i d i m e n s i o n a l s c a l i n g on D r e d i c t i o n : t h e Radex structure
F. Van O v W e
449
Author i n d e x
473
Subject index
477
This Page Intentionally Left Blank
xi
PARTICIPANTS
H. A B D I , L a b o r a t o i r e de p s y c h o l o g i e , Ancienne Facul t e , Rue Chabot Charny, 21000 Di j o n , France
H. ALGAYER, D o n n d o r f o r s t r . 93, D-8580 Bayreuth, Federal R e p u b l i c Germany J. ANDRES, R a t h a u s s t r . 53, 53 Bonn 3, Federal R e p u b l i c Germany J.-P. BARTHELEMY, ENST, Deoartement d ' I n f o r m a t i q u e , 46 Rw B a r r a u l t 75634 P a r i s Cedex 13, France A. BOHRER. CRS, S e c t i e voor P s y c h o l o g i s c h Onderzoek, Kazerne K l e i n K a s t e e l t j e , 1000 B r u s s e l , Belgium H. F. J .M. BUFFART, P s y c h o l o g i sch L a b o r a t o r i urn , Kathol i e k e U n i v e r s i t e i t Nijmegen, Postbus 9104, 6500HE Nijmegen, The N e t h e r l a n d s M.A. CROON, K a t h o l i e k e Hopeschool T i l b u r g , Hogeschoollaan 225, T i l b u r g , The Nether1ands E. DEGREEF, CSOO, V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2, 1050 B r u s s e l , Belgium L. DELBEKE, P s y c h o l o g i s c h I n s t i t u u t , K a t h o l i e k e U n i v e r s i t e i t Leuven, T i e n s e s t r a a t 102, 3000 Leuven, Belgium G. DE MEUR, U n i v e r s i t e L i b r e de B r u x e l l e s , CP 135, 1050 B r u x e l l e s , Belgium G. DE SOETE, D i e n s t v o o r Psychologie, R i j k s u n i v e r s i t e i t Gent, H e n r i Dunantlaan 2, 9000 Gent, Belgium M. DESPONTIN, CSOO, V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2, 1050 B r u s s e l , Be1 gium P. DICKES, U n i v e r s i t e de Nancy 11, Bd A l b e r t I, BP 3397, 54015 Nancy-Cedex, France J.-P. DOIGNON, U n i v e r s i t e L i b r e de B r u x e l l e s , CP 216, 1050 B r u x e l l e s , Belgium C. FLAMENT, Departement de P s y c h o l o g i e , U n i v e r s i t e de Provence, Les Blaques, Cereste, F-04110 R e i l l a n n e , France H.-G. GEISSLER, S e k t i o n Psychologie, K a r l - M a r x - U n i v e r s i t a t L e i p z i g , T i e c k s t r . 2, 7030 L e i p z i g , German Democratic R e p u b l i c M. GASSNER, U n i v e r s i t e L i b r e de B r u x e l l e s , CP 135, 1050 B r u x e l l e s , Belgium C.A.W. GLAS, C.I.T.O., Postbus 1034, 6801 MG Arnhem, The N e t h e r l a n d s S. GROSSBERG, Center f o r A d a p t i v e Systems, Boston U n i v e r s i t y , 111 C u m i n g t o n S t r e e t , Boston, Massachusetts 02215, USA P.K.G. GUNTHER, S i e b e n g e b i r g s t r . 11, D-5330 K o n i g s w i n t e r 41, F e d e r a l R e p u b l i c Germany M. HAHN, M o l l w i t z s t r . 5, D-1000 B e r l i n 19, Federal R e p u b l i c Germany K. HERBST, I n s t i t u t filr Psychologie, U n i v e r s i t a t Regensburg, U n i v e r s i t a t s t r . 31, D-8400 Regensburg, Federal R e p u b l i c Germany D. HEYER, I n s t i t u t f i r P s y c h o l o g i e , U n i v e r s i t a t K i e l , Ohlshausenstr. 40/60, D-2300 K i e l , Federal R e p u b l i c Germany M.G.H. JANSEN, I n s t i t u u t voor Onderwi jskunde, R i j k s u n i v e r s i t e i t Groningen, Westerhaven 16, 9718 AW Groningen , The N e t h e r l a n d s V.Y. KRYLOV, Department o f Mathematical Psychology, I n s t i t u t e o f Psychology, USSR, Academy o f Sciences, Moscow 129366, 13 Yaroslavskaya, USSR N. LAKENBRINK, A u f dem Kampf 11, D-2000 Hamburg 63, Federal R e p u b l i c Germany X. LUONG, L a b o r a t o i r e de Mathematiques, U n i v e r s i t e de Besancon, Besancon, France R.R. MAC DONALD, Department o f Psychology, U n i v e r s i t y o f S t i r l i n g , S t i r l i n g FK94LA. S c o t l a n d
xii
A.W.
Participants
MAC RAE, U n i v e r s i t y o f Birmingham, Box 363, Birmingham 615 ZTT, Great B r i t a i n R. MAUSFELD, U n i v e r s i t a t Bonn, Auf den S t e i n e n 13A, 53 Bonn 1, Federal R e p u b l i c Germany H.C. MICKO, I n s t i t u t f u r P s y c h o l o g i e , Technische U n i v e r s i t a t Braunschweig, Spielmannstrasse 12A, 0-3300 Braunschweig, F e d e r a l R e p u b l i c Germany B. MONJARDET, C e n t r e de M a t h h a t i q u e S o c i a l e , 54 Bd R a s p a i l , 75270 P a r i s Cedex 06, France C. MULLER, L e h r s t u h l fur P s y c h o l o g i e 111, U n i v e r s i t a t Regensburg, Postfach 397, D-8400 Regensburg, F e d e r a l R e p u b l i c Germany p . PLENNIGER. Seminar fiir P h i l o s o n h i e und E r r i c h u n g s w i s s e n s c 5 a f t d e r U n i v e r s i t a t F r e i b u r g , IJerthmannnlatz, D-7800 F r e i b u r o , F e d e r a l R e p u b l i c Germany B. ORTH. I n s t i t u t f u r P s y c h o l o g i e , U n i v e r s i t a t Hamburg, Von-Melle-Park 6, D-2000 Hamburg 13, F e d e r a l R e p u b l i c Germany M. PIRLOT, U n i v e r s i t e de 1 ' E t a t a Mons, 17 P l a c e Warocque, 7000 Mons, Belgium J .G.W. RAAIJMAKERS, P s y c h o l o g i s c h L a b o r a t o r i u m , K a t h o l i e k e U n i v e r s i t e i t Nijmegen, Postbus 9104, 6500 HE Nijmegen. The N e t h e r l a n d s K. R A I N I O , U n i v e r s i t y o f H e l s i n k i , P e t a k s e n t i e 44, 00630 H e l s i n k i , F i n l a n d F.S. ROBERTS. Qutqers, S t a t e U n i v e r s i t y c f f'ew Jersey. Deep. o f 'lath. a t New Brunswick, H i l l Center f o r t h e '4athematical Sciences, Rush Camous, New Rrunswick, New J e r s e y 08903, 1J.S.A. E.E. ROSKAM, Vakgroep Mathematische P s y c h o l o g i e , K a t h o l i e k e U n i v e r s i t e i t Nijmegen. Postbus 9104, 6500 HE Nijmegen, The N e t h e r l a n d s M. ROUBENS, F a c u l t e P o l y t e c h n i q u e de Mons, 9 Rue de Houdain, 8-7000 Mons, Belgium U. SCHULZ, F a k u l t a t f u r P s y c h o l o g i e und S p o r t w i s s e n s c h a f t , A b t . f u r e x p e r i m e n t e l l e und angew. P s y c h o l o g i e , U n i v e r s i t a t B i e l e f e l d , P o s t f a c h 8640, 4800 B i e l e f e l d , Federal R e p u b l i c Germany A . J . SMOLENAARS, P s y c h o l o g i s c h L a b o r a t o r i u m , U n i v e r s i t e i t Amsterdam, WeesDerolein 8 . 1018 XA Amsterdam, The N e t h e r l a n d s R. STEYER,' F a c h b e r e i c h I - P s y c h o l o g i e , U n i v e r s i t a t T r i e r , Schoeidershof, 0-5500 T r i e r , Federal R e p u b l i c Germany R. SUCK, U n i v e r s i t a t Osnabruck, P o s t f a c h 4469, 45 Osnabruck, F e d e r a l Republ i c Germany E . TEROUANNE, UER Mathematiques, U n i v e r s i t e Paul V a l e r y , BP 5043, 34032 M o n t p e l l i e r - Cedex, France P. VAN ACKER, 1 Chaussee de Wavre, 1050 B r u x e l l e s , B e l g i u m J . VAN BUGGENHAUT, CSOO. V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2. 1050 B r u s s e l , B e l g i u m A . VAN DER WILDT, CSOO, V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2, 1050 B r u s s e l , Be1g i um A. VAN DINGENEN, CSOO, V r i j e U n i v e r s i t e i t B r u s s e l , P1 e i n l a a n 2 , 1050 B r u s s e l , Belgium L . VAN LANGENHOVE, F a c u l t e i t P s y c h o l o g i e en Opvoedkunde, V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2, 1050 B r u s s e l , Belgium F. VAN OVERWALLE, EDUCO, V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2 , 1050 B r u s s e l , B e l g i u m J.C. VAN SNICK. F a c u l t 6 des Sciences Economiques e t S o c i a l e s . U n i v e r s i t e de 1 ' E t a t a Mons, 17 P l a c e Warocque, 7000 Mons, Belgium V.F. VENDA. Department o f E n g i n e e r i n g Psychology, I n s t i t u t e of Psychology, USSR Academy o f Sciences, Moscow 129366, 13 Yaroslavskaya. USSR R . VERHAERT, CSOO, V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2 , 1050 B r u s s e l , Belgium
Participants
N . D . VERHELST, Subfacul t e i t der psychologie, vakgroep PSM, R i jksuniversit e i t Utrecht, Sint-Jacobsstraat 14, 3511 BS Utrecht, The Netherlands Ph. VINCKE, I n s t i t u t de Statistique, Universite Libre de Bruxelles, CP 210, 8-1050 Bruxelles, Belgium
xiii
This Page Intentionally Left Blank
PARTI PERCEPTION, LEARNING AND MEMOR Y
This Page Intentionally Left Blank
TRENDS IN MATHEMATICAL PSYCHOLOGY E. Degreef and J . Van Bu genhaut (editors) 0 Elsevier Science Dublisfers B. V. (North-Holland), 1984
3
TREE REPRESENTPTIONS OF ASSOCIATIVE STPUCTUpE5 I N SFFWNTIC AND E P J SOD1 C VFF1ORY RE SF ARCH Herve Abdi Laboratoi r e de Ps.vcholoaie, D i j o n Jean-Pierre Barth12l&ny F.PJ.q.T., Paris Xuan Luona L a b o r a t o i r e de Mathematioues, Besanqon lnle exnose some research i n the area o f psycholorry o f memory i n v o l v i n q o r o x i m i t v o r d i s t a n c e m a t r i c e s . nronose some ways o f b u i l d i n g LIP such r a t r i c e s .
Then
we d e t a i l an a l a o r i t h m allowinc! the r e n r e s e n t a t i o n o f p r o x i m i t y matrices b y an a d d i t i v e t r e e , and c o n t r a s t t h i s new a l o o r i thm w i t h orevious ones,
F i n a l l v , we
examine some r e s u l t s obtained w i t h t h s method.
1. INTRODUCTION The general ournose o f t h i s naner i s t o emphasize the u t i l i t y and describe the use o f a d d i t i v e t r e e s i n o r d e r t o describe data c o l l e c t e d i n the f i e l d of the nsychology o f Femory.
This naner i s t h r e e f o l d : we f i r s t describe
some research l e a d i n o t o the c o n s t r u c t i o n o f distance o r n r o x i m i t y matrices; secondly we expose and d e t a i l the c o n s t r u c t i o n o f an a d d i t i v e t r e e as a r e n r e s e n t a t i o n o f the o r i o i n a l r i a t r i x : f i n a l l y , we examine the r e s u l t s o b t a i n ed. The u t i l i z a t i o n o f c l u s t e r i n q methods f o r a t t e s t i n a t h e o r a a n i r a t i o n o f memor v o r r e v e a l i n g i t s s t r u c t u r e has been s t r o n y l y advocated r e c e n t l y by some authors i n d i f f e r e n t areas o f c o g n i t i v e Fsycholooy (see, among others:
M i l l e r (1969) (1982)).
, Henley
(1969), F r i e n d l y (19781, Rosenbera e t a1 (1968)
,
(1972),
Most o f the used methods amount t o r e n r e s e n t the o r i g i n a l m a t r i x
by an U l t r a w t r i c Tree.
Recently, t h e r e has been an attempt t o b u i l d sow
methods l e a d i n g t o r e n r e s e n t a t i o n s l e s s s t r i n g e n t than the c l a s s i c a l U1 t r a m e t r i c Tree, i.e. the A d d i t i v e Tree (see Carroll & Chang (1973), Cunningham (1974), (1978); S a t t a t h R Tversky (1977)).
Ye nronose h e r e a f t e r an (econo-
m i c a l ) h e u r i s t i c g i v i n a an A d d i t i v e Tree from a o r o x i m i t y m a t r i x and i l l u s t r a te i t with c a l oaners.
some examples borrowing from our c u r r e n t research o r from c l a s s i -
H. ,4bdi, J.-P. Burthhlhmy und X. Long
4
2. A RUNCH OF EXAWLES
2.1. RAPTLET': : " ' i l ' f
T C THE GHOSTS"
I n 1932, R a r t l e t t asked
i:
few suhdects t o read an l r w r i c a n I n d i a n f o l k t a l e
(named "The '.tar o f the chosts"! and t o r e c a l l the s t o r i t on r e v e r a l occasions ( a w t h o d c a l l e d "rerleatec' r e n r o d u c t i o n " ) ; i n a v a r i a n t o f the method ( i . e . "yerial
r e n r o d u c t i o n " ) a chain o f d i f f e r e n t s u h i e c t s i s used, the f i r s t
heinq shown the o r i c l i n a l t e x t and then r e c a l l i n n f o r the second s u b j e c t who
would nass i t t o a t h i r d and s o on.
These c l a s s i c a l e x n e r i w n t s o f P a r t l e t t
w i l l serve here t o i l l u s t r a t e a s e t o f i n f o r m a t i c nrocedures, the aim of which i s t o b u i l d s o w distances hetween t e x t s . " ) I n f o m a t i c orocedurw
For reasons o f c o m p a t i h i l i t v , the nroorams are w r i t t e n i n Standard V i c r o s o f t and a t l e a s t 64 K-Bytes o f
Pasic (Vnder C P p ) ,
RAP1
and a d i s k U n i t are need-
Although these n r o n r a m i n c l u d e some various n o s s i h i l i t i e s , we w i l l r e -
ed.
s t r i c t o u r s e l f t o the n a r t d e a l i n a s n e c i f i c a l l y w i t h the c o n s t r u c t i o n o f
metri cs between t e x t s . I t must be c l e a r t h a t when we sneak of t h e t e x t oiven by a s u b i e c t , we c o u l d sqeak as w e l l o f a s e t o f themes o r ideas aiven by a suhdect D r o v i dino an adequate codinc; o f the raw data. The t e x t s are f i r s t t r a n s f o m d i n a d i s k f i l e , then f o r each t e x t we b u i l d the Lexicon associated w i t h i t . This Lexicon c o u l d be e i t h e r a Boolean Lexicon (i.e. i t rnerelv i n d i c a t e s the Presence o r the Absence o f the i t e m
o f Vocabulary) o r an i n t e o e r Lexicon ( i . e . rences o f each i t e m ) .
-
build
by union
-
i t i n d i c a t e s t h e numher o f Occur-
From the d i C f e r e n t Lexicons (Boolean or I n t e g e r ) we
a General Lexicon t h a t d e f i n e s the Vocabularv shared hy
the d i f f e r e n t t e x t s .
R ) Construction o f distances hetween t e x t s k n e n d i n q on the p o i n t o f view adonted, we c o u l d d e f i n e d i f f e r e n t distances; as an i l l u s t r a t i o s we examine t h r e e ways: (i\
the t e x t s as suhsets of the Vocabulary
( i i ) the t e x t s as R i - o a r t i t i n n s o f the Vocahularv ( i i i)a "orobabi 1i s ti c " q e n e r a 1 i t a t i o n . Dpncte by L i the Lexicon associated w i t h a t e x t T i , the aeneral Lexicon hy
V =
0
i
L i . and by
the comlement o f L i i n V.
5
Tree representations of associative structures
( i ) Each (Boolean) Lexicon* i s a subset o f t h e Vocahularv and we c o u l d use, f o r examnle , t h e we1 1-known d i s t a n c e between s e t s , t h e so c a l l e d c a r d i n a l o f t h e symmetric d i f f e r e n c e : d(Ti,Tj) ( i i ) {Li,E}
= ILi A L j l = ILi
nnl
+ l E n Ljl.
d e f i n e s a R i - P a r t i t i o n o f V ( i . e . a P a r t i t i o n w i t h two classes), So, we c o u l d use sow d i s t a n c e s between P a r t i t i o n s
and so does { L j , a l .
( c f . A r a b i e & Roorman ( 1 9 7 3 ) ) o r S i - P a r t i t i o n s , e . q . symmetric d i f f e r e n c e hetween ' i - p a r t i t i o n s d(Ti,Tj)
= =
the distance o f the
t h a t can be expressed as:
2( l L i n L i l + l E q n l ) ( l L i ~ ~ l + l E n L j l ) 2( lT"Kil)(I L i A L j I )
( i i i ) I n o r d e r t o take e x n l i c i t l y account o f t h e I n t e g e r Lexicons we c o u l d l o o k f o r an e x t e n s i o n of ( i ) . Ielith each T i i s a s s o c i a t e d a p r o b a b i l i t y measure on V ( i .e. t h e frequency o f t h e d i f f e r e n t words); denote t h e p r o b a h i l i t y o f i t e m x o f t e x t T i by P i ( x ) ; then we f i n d a f a m i l y o f d i s t a n c e s by d,(Ti
,Tj) =
c
[Pi(x)-Pj(x)I?
*V 2.2.
FFnTLJRES OF PFRSONALITY
T h i s r e s e a r c h l a y s on t h e b o r d e r between t h e work on t h e o r o a n i z a t i o n o f t h e semantic memory and t h e work unon the " i m p l i c i t Dsycholoqy".
The ourpose i s
t o describe the subjective orsanization o f the q u a l i f i e r s o f the character. As a m a t t e r o f f a c t , i t has o f t e n been n o t e d t h a t we t e n d t o qroup s u b j e c t i v e l y some f e a t u r e s o f c h a r a c t e r as i f we has an " I m o l i c i t Theory o f Pers o n a l i t y " ( c f . e.a.,
Rosenherrr e t a1 (1972), 'Veoner and V a l l a c h e r ( 1 9 7 7 ) ) .
I n t h i s e x p e r i m e n t we s e l e c t f i f t y e i q h t q u a l i f i e r s o f t h e c h a r a c t e r ( u s i n a some Thesauruses and a b i t o f l i t e r a t u r e , . ..). These q u a l i f i e r s a r e then o r i n t e d on s e o a r a t e cards and a i v e n i n d i v i d u a l l y t o t w e n t y - e i o h t s u b j e c t s w i t h t h e r e q u e s t t h a t he o r she s o r t t h e cards i n t o D i l e s w i t h t h e c o n s t r a i n t t h a t " t h e cards i n a same w i l e g i v e t h e f e e l i n g t o no t o o e t h e r " ; s u b j e c t s were f r e e t o choose t h e numher o f D i l e s f o r s o r t i n n ( f o r a r e v i e w o f t h e p r o and c o n t r a o f t h e s o r t i n a method, see Rosenbern ( 1 9 8 2 ) ) .
*N o t i c e
fuzzy " t h e "boolean" d i s t a n c e i n (i) and ( i i ) by t a k i n g t h e f u z z y e q u i v a l e n t o f t h e u n i o n and i n t e r s e c t i o n , i .e. Min and Max. t h a t one c o u l d
"
6
H. Abdi, j . 2 . Borthdl6my and X. Luong
Hence, each subject exoresses his oninion by a nartition on the s e t of the n u a l i f i e r s , and f o r usino as a 0-rlethodoloay ( c f . Kerlinoer (1973)) the afore evoked distances between nartitions could e a s i l y be used. The p a r t i tion given by a subject i s associated with a matrix whose rolls and columns ren-esert the Q u a l i f i e r s , a n d where we p u t a 1 a t the intersection of a row and a column i f the nualifiers are not sorted i n the same n i l e by the subi e c t . Obviously t h i s i s a distance matrix ( c f . W l l e r ( 1 9 6 9 ) \ , and so will he the matrix definetiby the sum of the matrices of tbe d i f f e r e n t subjects. I n this matrix we simnly count the number of suhjects who do n o t n u t tooether the q u a l i f i e r s . Pually vie could have & f i r e d a matrix o f co-occurences by the sum of the so-called incidence matrix (where a 1 means t + a t the q u a l i f i e r s are i n the same n i l e ) , f n r commodity reasons t h i s i s the m a t r i x we qive l a t e r ( c f . Table 3 ) . I t must be noted, in nassinq, t h a t the Data obtained a n d consenuently the distance matrix denend uoon the w t h o d s desinned f o r o b t a i n i n n such Data. I n n a r t i c u l a r , other wthods ( e . 0 . word associations, o r distances between words in free-recall, e t c . ) lead to other results (see Pbdi (1383)). 2.3. OLRIEP RUT