DZn_^jZ fZl_fZlbq_kdh]h ZgZebaZ
;ukljh_ \\_^_gb_ \ kbkl_fm 0DWKHPDWLFD QZklv , F_lh^bq_kdb_ mdZaZgby ih ki_pbZevghfm dm...
35 downloads
244 Views
1MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
DZn_^jZ fZl_fZlbq_kdh]h ZgZebaZ
;ukljh_ \\_^_gb_ \ kbkl_fm 0DWKHPDWLFD QZklv , F_lh^bq_kdb_ mdZaZgby ih ki_pbZevghfm dmjkm ©Kbkl_fu dhfivxl_jghc fZl_fZlbdbª
KhklZ\bl_eb= Y1:1BajZbe_\bq/ :1K1Kdey^g_\
None]
Jbk151: - Out [28 ] = Graphics3Db kh\f_klguc ihdZa g_kdhevdbo ]jZnbdh\/ ihkljh_gguo ih hl^_evghklb In [29 ]: =Show[%,%%]
Jbk151; Out [29 ] = Graphics3D
Kibkdb/ \_dlhju/ fZljbpu -------------- }, {x -> --------------}} 2 2 beb kjZam In[ ]:= Solve [x ∧ 3 + x - 2 == 0] Out[ ]= -1 - I Sqrt[7] -1 + I Sqrt[7] {{x -> 1}, {x -> -------------- }, {x ->-------------- }} 2 2 H[jZlbl_ \gbfZgb_ gZ fgbfmx _^bgbpm , \ aZibkb ^\mo dhjg_c1 Kbkl_fZ 0DWKHPDWLFD gZoh^bl k ihfhsvx dhfZg^u 6ROYH \k_ +\_s_kl\_ggu_ b dhfie_dkgu_, j_r_gby Ze]_[jZbq_kdbo mjZ\g_gbc kl_i_gb g_ \ur_ 7/ ijblhf b ^ey mjZ\g_gbc k iZjZf_ljhf = In[ ]:= Solve [x ∧ 4 + a∗ ∗ x - 2 == 0, x] Out[ ]= … hl\_l kebrdhf ]jhfha^hd/ \u [_a ljm^Z gZc^_l_ _]h kZfb1 J_r_gby Ze]_[jZbq_kdh]h mjZ\g_gby kl_i_gb 8 beb \ur_ fh]ml [ulv gZc^_gu/ \hh[s_ ]h\hjy/ qbke_ggh1 KdZ`_f/ mjZ\g_gb_ [∧8.[05 3 kbkl_fZ 0DWKHPDWLFD j_rbl lhqgh= In[ ]:= Solve [x ∧ 5 + x - 2 == 0] Out[ ] = … 3 0 hldZ`_lky= Z mjZ\g_gb_ [ ∧ 8 . [ 0 : In[ ]:= Solve [x ∧ 5 + x - 7 == 0] Out[ ]= {ToRules[Roots[x^5 + x == 7, x]]} Ijb^_lky j_rZlv mjZ\g_gb_ qbke_ggh= In[ ]:= NSolve [x^5 + x - 7
== 0]
Out[ ]= {{x -> -1.21388 - 0.924188 I}, {x -> -1.21388 + 0.924188 I}, {x->0.508469 -1.36862 I}, {x->0.508469 +1.36862 I}, {x ->1.41081}} LjZgkp_g^_glgu_ mjZ\g_gby j_rZxl/ aZ^Z\Zy gZqZevgh_ ijb[eb`_gb_ d dhjgx1 In[ ]:= FindRoot [Cos[x] == 2∗ x; {x,0}] Out[ ]= {x -> 0.450184} Fh`gh j_rZlv kbkl_fu mjZ\g_gbc= In[ ]:= Solve [{a*x +b*y == g, c*x + d*y == h} ,{x,y}] Out[ ]=
{{x ->
g a
+
b (c g - a h) c g - a h --------------, y -> -( ------------ ) } a (-(b c) + a d) -(b c) + a d
b In[ ]:= FindRoot [{ x + y == Sin[x], x - y == Cos[x], {x,0}, {y,0}] Out[ ]= {x -> 0.704812, y -> -0.0569214} Kbkl_fZ 0DWKHPDWLFD iha\hey_l j_rZlv ^bnn_j_gpbZevgu_ mjZ\g_gby b bo kbkl_fu= In[ ]:= DSolve [y''[x] - 2y'[x] + 1 == 0, y[x], x] x 2 x Out[ ] = {{y[x] -> - + C[1] + E C[2]}} 2 J_r_gb_ kh^_j`bl ijha\hevgu_ ihklhyggu_ K>4@ b &>5@1 Fh`gh gZclb qbke_ggh_ j_r_gb_ aZ^Zqb Dhrb ^ey ^bnn_j_gpbZevguo mjZ\g_gbc beb bo kbkl_f= In[ ]:= NDSolve[{x'[t]==-y[t]-x[t],y'[t]==2x[t]y[t],x[0]==1,y[0]==-1},{x[t],y[t]},{t,0,10}] Out[ ]={{x[t] -> InterpolatingFunction[{0., 10.},][t], y[t] -> InterpolatingFunction[{0., 10.}, ][t]}} In[ ]:= Plot[Evaluate[{x[t],y[t]}/.%],{t,0,10}, PlotRange->All]
4 318
5
7
9
;
43
0318 04
Out[ ]=-GraphicsFh`gh bkdZlv wdklj_fmfu nmgdpbc h^ghc b g_kdhevdbo i_j_f_gguo1
In[ ]:=FindMinimum[Exp[x]*Cos[x] ,{x,0}] Out[ ]= {-0.0670197, {x -> -2.35619}} In[ ]:=FindMinimum[Sin[x]*Cos[y] ,{x,0},{y,0}] Out[ ]= {-1., {x -> -1.5708, y -> 0.}} AZ^Zqb ebg_cgh]h ijh]jZffbjh\Zgby g_[hevrhc jZaf_jghklb fh`gh j_rZlv/ bkihevamy kbkl_fm 0DWKHPDWLFD In[ ]:= ConstrainedMax [19x - 47y + 28z, {x + y+ z > 0, x + y + z < 1, x > 0, y > 0, z > 0}, {x, y, z}] Out[ ]= {28, {x -> 0, y -> 0, z -> 1}}
:gZeba Ohly kbkl_fm ³0DWKHPDWLFD´ b _c ih^h[gu_ ^h\hevgh qZklh gZau\Zxl kbkl_fZfb dhfivxl_jghc Ze]_[ju/ \ gbo lZd beb bgZq_ ij_^klZ\e_gu \k_ nmg^Zf_glZevgu_ jZa^_eu fZl_fZlbdb1 ^Ze__ ± ^_jaZcl_$ >bnn_j_gpbjh\Zlv \ kbkl_f_ ³0DWKHPDWLFD´ g_ ijhklh/ Z hq_gv ijhklh$ < dZq_kl\_ Zj]mf_glh\ dhfZg^u ^bnn_j_gpbjh\Zgby '>1/1@ gm`gh mdZaZlv lm nmgdpbx/ dhlhjmx fu gZf_j_gu ijh^bnn_j_gpbjh\Zlv/ b lm i_j_f_ggmx +beb i_j_f_ggu_,/ ih dhlhjhc +dhlhjuf, ke_^m_l ^bnn_j_gpbjh\Zlv1 \@ b 'W>]@ 0 ^bnn_j_gpbZeu i_j_f_gguo [/ \ b ]1
DhfZg^Z 'W ijbf_gy_lky b ^ey \uqbke_gby iheguo ijhba\h^guo nmgdpbc fgh]bo i_j_f_gguo= In[ ]:=Dt[f[Sin[x y z]],x] Out[ ]= Cos[x y z] (y z + x z Dt[y, x] + x y Dt[z, x]) f'[Sin[x y z]] A^_kv 'W>\/[@ b 'W>]/[@ 0 ihegu_ ijhba\h^gu_ i_j_f_gguo \ b ] ih i_j_f_gghc o1 Gh fh`gh b kbkl_fm ³0DWKHPDWLFD´ ©ihkZ^blv \ dZehrmª1 HgZ ©agZ_lª/ qlh _[_ 0 g_^bnn_j_gpbjm_fZy nmgdpby/ b hldZau\Z_lky \uqbkeylv __ ijhba\h^gmx ^Z`_ \ l_o lhqdZo/ ]^_ nmgdpby ^bnn_j_gpbjm_fZ1 LZd kihdhcg__$ In[ ]:=D[Abs[x],x]/.x->1 Out[ ]= Abs'[1] Bgl_]jbjh\Zgb_ \ kbkl_f_ ³0DWKHPDWLFD´ +dZd b \ `bagb, keh`g__ ^bnn_j_gpbjh\Zgby1 NhjfZevgh \k_ ijhklh= g_hij_^_e_gguc bgl_]jZe \uqbkeyxl ihkj_^kl\hf dhfZg^u ,QWHJUDWH= ^ey ∫ [ Q G[ ihemqZ_f
In[ ]:=Integrate[x^n,x]
Out[ ]=
1 + n x -----1 + n
Gh In[ ]:=Integrate[Sin[Sin[x]],x] ^Zkl Out[ ]= Integrate[Sin[Sin[x]],x] LZdbf h[jZahf/ kbkl_fZ ³0DWKHPDWLFD´ hldZaZeZkv [jZlv g_[_jmsbcky bgl_]jZe1 Gh b g_ \k_ [_jmsb_ky bgl_]jZeu kbkl_fZ ³0DWKHPDWLFD´ ]hlh\Z [jZlv= \ hl\_l gZ aZ^Zgb_ In[ ]:= Integrate[1/(1+x^4+x^9+x^11),x] kbkl_fZ ³0DWKHPDWLFD´ ihdZ`_l \k_/ qlh hgZ fh`_l \ ^Zgghf kemqZ_ +kh\k_f dZd q_eh\_d,= Out[ ]= Integrate[(15/16 - (7*x)/8 + (13*x^2)/16 (3*x^3)/4 + (5*x^4)/8 - x^5/2 + (3*x^6)/8 - x^7/4 + x^8/8 - x^9/16)/ (1 - x + x^2 - x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 2*x^8 - x^9 + x^10) , x] + Log[1 + x]/16 Dhg_qgh/ \ kemqZ_ hij_^_e_gguo bgl_]jZeh\ m^Z_lky k^_eZlv ih[hevr_ 0 dhfZg^Z ,QWHJUDWH iha\hey_l \uqbkeylv b hij_^_e_ggu_ bgl_]jZeu/ Z ^ey l_o/
dhlhju_ g_ [_jmlky k ihfhsvx dhfZg^u ,QWHJUDWH/ bf__lky dhfZg^Z 1,QWHJUDWH/ iha\heyxsZy \uqbkeylv hij_^_e_ggu_ bgl_]jZeu ijb[eb`_ggh1 E
BlZd1 \uqbkebf
∫ OQ[G[ D
In[ ]:=Integrate[Log[x],{x,a,b}] Integrate::gener: Unable to check convergence. Out[ ]= -(a (-1 + Log[a])) + b (-1 + Log[b]) Gh g_[_jmsb_ky bgl_]jZeu kbkl_fZ \havf_l lhevdh qbke_ggh= In[ ]:=Integrate[Sin[Sin[x]],{x,0,Pi}] General::intinit: Loading integration packages -- please wait. Out[ ]= Integrate[Sin[Sin[x]], {x,0,Pi }] In[ ]:=NIntegrate[Sin[Sin[x]], {x,0,Pi }] Out[ ]= 1.78649 Fh`gh \uqbkeylv ih\lhjgu_ bgl_]jZeu/ gZijbf_j/ 4
4− [ 5
∫ G[ ∫ +[ 3
5
+ \ 5 ,G\
− 4− [ 5
In[ ]:=Integrate[x^2+y^2,{x,0,1},{y,-Sqrt[1-x^2],Sqrt[1x^2]}] Pi Out[ ]= — 4 b 4
4− [ 5
∫ G[ ∫ 4 G\
−4
− 4− [ 5
In[ ]:=Integrate[1,{x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}] Out[ ]= Pi Ijb bgl_]jbjh\Zgbb kbkl_fZ ³0DWKHPDWLFD´ fh`_l aZ[em`^Zlvky ± kh\k_f dZd q_eh\_d1 LZd i_j\hh[jZagZy nmgdpby ^ey [_a mdZaZgby ijhf_`mldh\/ gZ dhlhjuo wlh \_jgh1
4
[5
[m^_l gZc^_gZ dZd
: ^ey
4
∫ 7 + VLQ[G[
4 [
fu
ihemqbf ihkj_^kl\hf dhfZg^u ,QWHJUDWH>42+7.6LQ>[@,/[@ j_amevlZl/ g_ y\eyxsbcky i_j\hh[jZaghc ih^ugl_]jZevghc nmgdpbb1 LZdh\Zy i_j\hh[jZagZy h[yaZgZ [ulv g_ij_ju\ghc/ ihemq_ggZy `_ nmgdpby bf__l jZaju\u \ lhqdZo \b^Z 5+N + 4,Œ / \ q_f e_]dh m[_^blvky/ ihkljhb\ ]jZnbd ihkj_^kl\hf dhfZg^u 3ORW>(/^[/053L/53L`@ b ijhZgZebabjh\Z\ ih\_^_gb_ ihemq_gghc nmgdpbb \ mdZaZgguo lhqdZo1
>ey \uqbke_gby kmff \ kbkl_f_ ³0DWKHPDWLFD´ bf__lky dhfZg^Z 6XP= In[ ]:=Sum[x^i/i,{i,1,9}] 2
Out[ ]= x +
x - + 2
3 x - + 3
4 x - + 4
5 x - + 5
6 x - + 6
7 x - + 7
8 9 x x - + 8 9
In[ ]:=Sum[x^i y^j,{i,1,2},{j,1,3}] 2 2 2 2 3 2 3 Out[ ]=x y + x y + x y + x y + x y + x y Kbkl_fZ ³0DWKHPDWLFD´ mki_rgh jZaeZ]Z_l nmgdpbb \ jy^ L_cehjZ= In[ ]:= Series[Sin[x],{x,0,3}] 3 x 4 Out[ ]= x - - + O[x ] 6 Hl[jZku\Zlv hklZlhqguc qe_g iha\hey_l dhfZg^Z 1RUPDO= In[ ]:= Normal[%] 3 x Out[ ]= x - 6 In[ ]:= Normal[Series[Sin[x],{x,0,5}]]
3
5
x x Out[ ]= x - - + 6 120 In[ ]:= Normal[Series[Sin[x],{x,0,7}]] 3 5 x x Out[ ]=x - - + 6 120
-
7 x 5040
0] Out[ ]=1 GZ ihiuldm ih^klZ\blv 3 \ \ujZ`_gb_ kbkl_fZ ³aZjm]Z_lky´= In[ ]:= Sin[x]/x /.x->0 1 Power::infy: Infinite expression - encountered. 0 Infinity::indet: Indeterminate expression 0 ComplexInfinity encountered. Out[ ]=Indeterminate ohly ijb ^jm]bo agZq_gbyo [ agZq_gb_ \ujZ`_gby [m^_l \uqbke_gh= In[ ]:= Sin[x]/x /.x->1 Out[ ]=Sin[1] In[ ]:= Sin[x]/x /.x->2 Pi Out[ ]=0 Infinity] Out[ ]=E In[ ]:= Limit[(1+1/x)^x,x->-Infinity] Out[ ]=E : \hl ijbf_j ihkeh`g__=
H 42+[ − D, gZ ij_^eh`_gb_ \uqbkeblv OLP [→D kbkl_fZ ³0DWKHPDWLFD´ ^Zkl qZklbqgh \_jguc hl\_l= In[ ]:= Limit[E^(1/(x-a)),x->a] Out[ ]=Infinity HgZ mki_rgh \uqbkebl e_\uc b ijZ\uc ij_^_eu/ In[ ]:= Limit[E^(1/(x-a)),x->a,Direction->1]
Out[ ]=0 In[ ]:= Limit[E^(1/(x-a)),x->a,Direction->-1] Out[ ]=Infinity gh lZd b g_ kfh`_l ihgylv/ qlh ^\mklhjhgg_]h ij_^_eZ g_ kms_kl\m_l In[ ]:= Limit[E^(1/(x-a)),x->a] Out[ ]=Infinity Dhg_qgh/ \ dgb]_ K1